Math, asked by navi62, 1 year ago

Find the area of parallelogram whose adjacent sides are given by the vectors a= 3i+j+4k and b= i-j+k.

Answers

Answered by HappiestWriter012
12

Given, Parallelogram with adjacent sides

a = 3i + j + 4k

b = i - j + k

i, j, k are Unit vectors along x, y, z axes.

Area of the parallelogram is, |a \times b|

a \times b \\  \\  = \begin{vmatrix}i &amp; j &amp; k\\3 &amp; 1&amp; 4 \\ 1&amp;  - 1&amp; 1\end{vmatrix} \\  \\  = i(1 \times 1 - 4 \times  - 1) - j(3 \times 1 - 4 \times 1) + k(3 \times  - 1 - 1 \times 1) \\  \\  = i(1 + 4) - j( - 1) + k( - 3 - 1) \\  \\  = 5i + j - 4k</p><p>

Now,

 |a \times b|  =  \sqrt{ {5}^{2} +  {(  1)}^{2} +  {( - 4)}^{2}   }  \\  \\  |a \times b|  =  \sqrt{25 + 1 + 16}  \\  \\  |a \times b|  =  \sqrt{42}

Therefore, Area of the parallelogram is √42 sq.units

Answered by juwairiyahimran18
1

Given, Parallelogram with adjacent sides

a = 3i + j + 4k

b = i - j + k

i, j, k are Unit vectors along x, y, z axes.

Area of the parallelogram is, |a × b|

 \begin{gathered}a \times b  =\begin{vmatrix} i &amp; j &amp; k\\3 &amp; 1&amp; 4 \\ 1&amp; - 1&amp; 1\end{vmatrix} \\ \\ = i(1 \times 1 - 4 \times - 1) - j(3 \times 1 - 4 \times 1) + k(3 \times - 1 - 1 \times 1) \\ \\ = i(1 + 4) - j( - 1) + k( - 3 - 1) \\ \\ = 5i + j - 4k \end{gathered} </p><p>

 =i(1×1−4×−1)−j(3×1−4×1)+k(3×−1−1×1) \\ =i(1+4)−j(−1)+k(−3−1) \\ =5i+j−4k

Now,

\begin{gathered} |a \times b| = \sqrt{ {5}^{2} + {( 1)}^{2} + {( - 4)}^{2} } \\ \\ |a \times b| = \sqrt{25 + 1 + 16} \\ \\ |a \times b| = \sqrt{42} \end{gathered}

Therefore, Area of the parallelogram is √42 sq.units

Similar questions