Math, asked by anchalsingh72, 8 months ago

find the area of polygon ABCDE shown in the adjacent whose AB 5cm BC 5cm CD 4cm DE 8cm EA 4cm BF 3cm with angle 90°​

Answers

Answered by ankit73422
1

Area of regular pentagon A B C DE of side 5 cm and AD = B D =4 cm .

→ The sides AD and BD will convert polygon AB C D E in three triangles namely ΔADE, ΔADB, and ΔDCB.

→ΔADE≅ΔDCB ⇒ [SAS, AE=DE=BC=DC= 5 cm, AD=DB=4 cm]

→Draw EM ⊥ AD, and D N ⊥ AB

In an isosceles triangle perpendicular from opposite vertex divides the side on which perpendicular is falling into two equal parts.

Using pythagoras theorem In Δ EMD,

ED = 5 cm, EM =?, DM = 2 cm

EM² = ED² - DM²

= 5² - 2²

= 25 - 4

=21

EM =√ 21

Area of a triangle = × Base × Height

Area (Δ ADE) =

→Similarly , In ΔADB , length of perpendicular DN is given by the method used above ==

Area ( ΔDAB)= cm²

Area of pentagon A B CD E = Ar(ΔADE) + Ar(DAB) + Ar(ΔDBC)

=2× 2√21 + ⇒Ar(ΔADE) =Ar(ΔDBC)

= 4 × 4.5 + 2.5 × 6.24

= 18 + 15.60

= 33.60 cm²

2. Regular hexagon of side 6 cm.

Consider a regular hexagon P Q R S T U in which PQ=QR=RS=ST=TU=UP= 6 cm.

Join Q and U , then T and R.

Sum of all angles of Regular hexagon = 180° × (6-2)

= 180° × 4

= 720°

All interior angles of regular hexagon = 720° ÷ 6

= 120°

As, PU = QP=6 cm

→∠PUQ = ∠PQU [ if sides are equal then angle opposite to them are equal]

→ ∠P + ∠PUQ + ∠PQU = 180° → [Angle sum property of triangle]

→ 120° + 2∠PUQ = 180°

→ 2∠PUQ = 180°- 120°

→ ∠PUQ = 60° ÷ 2 = 30°

Draw , PH ⊥ UQ and SJ⊥TR.→[ Perpendicular from opposite vertex in an isosceles triangle divides the side on which perpendicular is falling in two equal parts.]

Cos 30° =

→ UH = 3 √3 cm , So U Q = 2 × UH =2 ×3 √3 cm= 6√3 cm

Sin 30° =

As, sin 30° =

PH = 3 cm

→Area (ΔPUQ) = cm²

Area(ΔPUQ) = Area(ΔTRS)= 18 √3 cm² ∵ [ΔPUQ and Δ TRS are congruent by SAS, PU=TS, PQ=SR, and UQ= TR]

Now consider rectangle URTQ

→Area (Rectangle UQRT) = UQ × QR → [Length × Breadth=Area of Rectangle]

= 6 √3 × 6

= 36 √3 cm²

→Area Hexagon (P Q R STU)

= Area(ΔPQU) + Area rectangle (UQRT) + Area(ΔTRS)

= 18 √3 + 36 √3 +18 √3

= 72 √3 cm²

Similar questions