Math, asked by arjunsharma9064, 7 months ago

find the area of polygon ABCDE,whose measurements in metres are given in the figure. ans-244m²​

Attachments:

Answers

Answered by boss001gamer
36

Step-by-step explanation:

ANSWER

→ There are three triangles comprising the pentagon

& area of triangle by heron's formula =

s(s−a)(s−b)(s−c)

1

a = b = 8 , c = 12

S=

2

8+8+12

=14

1

=

14(6)(6)(2)

=6×2

7

2

a = b = 12, b = 10

S = 17

2

17(5)(5)(7)

=5

119

3

a = 10, b = 10, c = 12

S = 16

3

=

16(6)(6)(4)

=6×4×2=48

⇒ Total area =48+12

7

+5

119

m

2

solution

Answered by Anonymous
11

Given:-

  • \sf{ABCDE\: is\: a\: polygon}

To find:-

  • \sf{Area\: of \:the \:polygon}

From the figure:-

\sf{There \:are \:three \:triangle \:in \:the\: given \:figure\: of \:polygon}

Names of triangle:-

  1. \sf{\triangle ABE}
  2. \sf{\triangle DCE}
  3. \sf{\triangle BEC}

Solution:-

\sf{In \triangle ABE,}

\sf{AB = 8m}

\sf{AE = 8m}

\sf{BE = 12m}

\sf{S = \dfrac{a + b + c}{2}}

=>\sf{S = \dfrac{8 + 8 + 12}{2}\:m}

=>\sf{S = \dfrac{28}{2}\:m}

=>\sf{S = 14\:m}

Now According to heron's formula,

\sf{Area = \sqrt{s(s-a)(s-b)(s-c)}\:sq.units}

\sf{Area = \sqrt{14(14-8)(14-8)(14-12)}\:{m}^{2}}

= \sf{Area = \sqrt{14 \times 6\times6\times2}\:{m}^{2}}

= \sf{ \:\:\:\:\:\:\: 6\sqrt{2\times7\times2}\:{m}^{2}}

= \sf{ \:\:\:\:\:\:\: 6\times2\sqrt{7}\:{m}^{2}}

=\sf{\:\:\:\:\:\:\:  12\sqrt{7}\:{m}^{2}}

=\sf{\:\:\:\:\:\:\:  12\times2.64 \: {m}^{2}}

= \sf{\:\:\:\:\:\:\: 31.68\:{m}^{2}}

\sf{In \triangle CED,}

\sf{CE = 12m}

\sf{CD = 10m}

\sf{DE = 10m}

=\sf{S = \dfrac{12+10+10}{2}\:m}

=>\sf{S = \dfrac{32}{2}\:m}

=>\sf{S = 16m}

According to Heron's Formula,

=\sf{Area = \sqrt{16(16-10)(16-10)(16-12)}\:{m}^{2}}

=\sf{\:\:\:\:\:\:  \sqrt{16\times6\times6\times4}\:{m}^{2}}

=\sf{\:\:\:\:\:\:  6\sqrt{4\times4\times4}\:{m}^{2}}

=\sf{\:\:\:\:\:\: 6\times4\sqrt{2\times2}\:{m}^{2}}

=\sf{\:\:\:\:\:\: 24\times2\:{m}^{2}}

= \sf{\:\:\:\:\:\:  48\:{m}^{2}}

\sf{In \triangle BEC,}

\sf{BC = 8m}

\sf{CE = 12m}

\sf{BE = 12m}

=\sf{S = \dfrac{8+12+12}{2}\:m}

=>\sf{S = \dfrac{32}{2}\:m}

=> \sf{S = 16m}

According to Heron's Formula,

\sf{Area = \sqrt{16(16-8)(16-12)(16-12)}\:{m}^{2}}

=\sf{\:\:\:\:\:\:  \sqrt{16\times8\times4\times4}\:{m}^{2}}

= \sf{\:\:\:\:\:\:  4\sqrt{4\times4\times2\times2\times2}\:{m}^{2}}

=\sf{\:\:\:\:\:\:\:  4\times4\times2\sqrt{2}\:{m}^{2}}

=\sf{\:\:\:\:\:\:  32\sqrt{2}\:{m}^{2}}

= \sf{\:\:\:\:\:\: 32\times1.41\:{m}^{2}}

= \sf{\:\:\:\:\:\: 45.12\:{m}^{2}}

\sf{Area\:of\:polygon = Sum\:of\:area\:of\:all\:three\:triangles}

\sf{Area\:of\:polygon = ( 31.68 + 48 + 45.12) \:{m}^{2}}

\sf{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: = 124.8\:{m}^{2} [Approx]}

Similar questions