find the area of polygon PQRSTU shown in adjoining figure, if PS=11cm, PY=9cm, PX=8cm, PW=5cm, PV=3cm, QV=5cm, UW=4cm, RX=6cm, TY=2cm.
Attachments:
Answers
Answered by
45
According to question
It is given that
PS = 11 Cm
PY = 9 Cm
PX = 8 Cm
PW = 5 Cm
PV = 3 Cm
QV = 5 Cm
QW =4 Cm
RX = 6 Cm
TY = 2 Cm
Thus Total re of the polygon = Ar( PVQ ) + Ar (PUW) + Ar ( SYT) + Ar(RSX) + Ar (QVXR) + Ar( WXTU)
Area = 1/2 * 5 * 3 + 1/2 * 5 * 4 + 1/2 * 2 * 2 + 1/2 * 3 * 6 + 12 * 5 *1 + 5*5 + 1/2 * 4 * 2 + 4 * 2
Area = 15/2 + 10 + 2 + 9 + 60 + 25 + 4 + 8
= 125.5 Cm^2
It is given that
PS = 11 Cm
PY = 9 Cm
PX = 8 Cm
PW = 5 Cm
PV = 3 Cm
QV = 5 Cm
QW =4 Cm
RX = 6 Cm
TY = 2 Cm
Thus Total re of the polygon = Ar( PVQ ) + Ar (PUW) + Ar ( SYT) + Ar(RSX) + Ar (QVXR) + Ar( WXTU)
Area = 1/2 * 5 * 3 + 1/2 * 5 * 4 + 1/2 * 2 * 2 + 1/2 * 3 * 6 + 12 * 5 *1 + 5*5 + 1/2 * 4 * 2 + 4 * 2
Area = 15/2 + 10 + 2 + 9 + 60 + 25 + 4 + 8
= 125.5 Cm^2
Answered by
129
Solution :-
1) Area of Δ PQV = 1/2*Base*Height
PV = Base = 3 cm and QV = Height = 5 cm
⇒ Area = 1/2*3*5
= 15/2
= 7.5 sq cm
2) Area of Trapezium VQRX = 1/2*(Sum of two parallel sides)*height
Px - PV = VX
⇒ 8 cm - 3 cm = VX (Height)
= 5 cm
Two parallel sides are QV = 5 cm and RX = 6 cm
⇒ 1/2*(6 + 5)5
⇒ 1/2*11*5
⇒ 55/2
= 27.5 sq cm
3) Area of Δ RSX = 1/2*Base*Height
PS - PX = XS (Base)
⇒ 11 cm - 8 cm = 3 cm
So, XS = Base = 3 cm and RX = Height = 6 cm
⇒ 1/2*3*6
⇒ 18/2
= 9 sq cm
4) Area of Δ STY = 1/2*Base*Height
PS - PY = SY (Base)
⇒ 11 - 9 = SY (Base) = 2 cm
Height = TY = 2 cm
1/2*2*2
= 2 sq cm
5) Area of trapezium TUWY = 1/2(Sum of two parallel side)*Height
Two parallel sides = UW = 4 cm and TY = 2 cm
PY - PW = WX (Height)
⇒ 9 - 5 = WX = 4 cm (Height)
Area of trapezium = 1/2*(4 + 2)*4
⇒ 1/2*6*4
⇒ 24/2
= 12 sq cm
6) Area of Δ PUW = 1/2*Base*Height
⇒ UW = 4 cm (Base) and PW (Height) = 5 cm
Area = 1/2*4*5
⇒ 20/2
= 10 sq cm
Area of the figure PQRSTU = Area of Δ PQV + Area Δ of Trapezium VQRX +
Area of Δ RSX + Area of Δ STY + Area of Trapezium TUWY + Area of Δ
PUW
⇒ 7.5 + 27.5 + 9 + 2 + 12 + 10
⇒ 68 sq cm
Answer.
1) Area of Δ PQV = 1/2*Base*Height
PV = Base = 3 cm and QV = Height = 5 cm
⇒ Area = 1/2*3*5
= 15/2
= 7.5 sq cm
2) Area of Trapezium VQRX = 1/2*(Sum of two parallel sides)*height
Px - PV = VX
⇒ 8 cm - 3 cm = VX (Height)
= 5 cm
Two parallel sides are QV = 5 cm and RX = 6 cm
⇒ 1/2*(6 + 5)5
⇒ 1/2*11*5
⇒ 55/2
= 27.5 sq cm
3) Area of Δ RSX = 1/2*Base*Height
PS - PX = XS (Base)
⇒ 11 cm - 8 cm = 3 cm
So, XS = Base = 3 cm and RX = Height = 6 cm
⇒ 1/2*3*6
⇒ 18/2
= 9 sq cm
4) Area of Δ STY = 1/2*Base*Height
PS - PY = SY (Base)
⇒ 11 - 9 = SY (Base) = 2 cm
Height = TY = 2 cm
1/2*2*2
= 2 sq cm
5) Area of trapezium TUWY = 1/2(Sum of two parallel side)*Height
Two parallel sides = UW = 4 cm and TY = 2 cm
PY - PW = WX (Height)
⇒ 9 - 5 = WX = 4 cm (Height)
Area of trapezium = 1/2*(4 + 2)*4
⇒ 1/2*6*4
⇒ 24/2
= 12 sq cm
6) Area of Δ PUW = 1/2*Base*Height
⇒ UW = 4 cm (Base) and PW (Height) = 5 cm
Area = 1/2*4*5
⇒ 20/2
= 10 sq cm
Area of the figure PQRSTU = Area of Δ PQV + Area Δ of Trapezium VQRX +
Area of Δ RSX + Area of Δ STY + Area of Trapezium TUWY + Area of Δ
PUW
⇒ 7.5 + 27.5 + 9 + 2 + 12 + 10
⇒ 68 sq cm
Answer.
Similar questions