Find the area of quadrilateral ABCD from the given measurements in the figure below. AB is perpendicular to BC and AE is perpendicular to CD.
Attachments:
Answers
Answered by
34
Answer:
In Triangle ABC
- AB perpendicular BC
- Base = BC = 8 cm
- Height = AB = 15 cm
Area of Triangle ABC = 1/2 x Base x Height
- 1/2 x BC x AB
- 1/2 x 8 x 15
- 4 x 15
- 60 cm²
In Triangle ABC
By Pythagoras theorm : AC² = AB² + CB²
- AC² = 15² + 8²
- AC² = 225 + 64
- AC² = 289
- AC = 17 cm
In Triangle AEC
- AE perpendicular CE
- Height = AE = 6 cm
By Pythagoras theorm : AC² = AE ² + CE²
- 17² = 6² + CE²
- CE² = 17² - 6²
- CE² = 289 - 36
- CE² = 253
- CE = 15.9 cm
Area Triangle AEC = 1/2 x base x height
- 1/2 x CE x AE
- 1/2 x 15.9 x 6
- 15.9 x 3
- 47.7 cm²
In Triangle AED
- AE perpendicular ED
- Base = ED = CD-CE = 21-15.9 = 5.1 cm
- Height = AE = 6 cm
Area of Triangle AED = 1/2 base x height
- 1/2 x ED x AE
- 1/2 x 5.1 x 6
- 5.1 x 3
- 15.3 cm²
Area of Quadrilateral ABCD
- Area of Triangle ABC + Area of Triangle AED + Area of Triangle AEC
- 60 + 15.3 + 47.7 cm²
- 123 cm²
Answer = 123 cm²
Similar questions