Math, asked by Vanshika9915, 10 months ago

find the area of quadrilateral ABCD given in below figure​

Attachments:

Answers

Answered by ushmagaur
3

Answer:

The area of quadrilateral ABCD is 41.326\ cm^2.

Step-by-step explanation:

Since ABCD is a quadrilateral in which AB = 7 cm, BC = 15 cm, CD = 12 cm, AD = 6 cm and diagonal AC = 9 cm.

Recall the heron's formula,

Area of triangle = \sqrt{s(s-a)(s-b)(s-c)},

where s is the semi perimeter and a,b,c are the sides of triangle.

Now,

In ΔADC,

Semi perimeter, s=\frac{AD+CD+AC}{2}

s=\frac{6+12+9}{2}

      =\frac{27}{2}

      =13.5 cm

Using heron's formula,

Area of ΔADC = \sqrt{s(s-AD)(s-CD)(s-AC)}

                         = \sqrt{13.5(13.5-6)(13.5-12)(13.5-9)}

                         = \sqrt{13.5(7.5)(1.5)(4.5)}

                         = \sqrt{683.4375}

                         = 26.142 cm^2

Similarly,

In ΔABC,

Semi perimeter, s=\frac{AB+BC+AC}{2}

s=\frac{7+15+9}{2}

      =\frac{31}{2}

      =15.5 cm

Using heron's formula,

Area of ΔABC = \sqrt{s(s-AB)(s-BC)(s-AC)}

                         = \sqrt{15.5(15.5-7)(15.5-15)(15.5-9)}

                         = \sqrt{15.5(8.5)(0.5)(3.5)}

                         = \sqrt{230.6525}

                         = 15.184 cm^2

Thus, area of quadrilateral ABCD = Area of ΔADC + Area of ΔABC

                                                          = 26.142+15.184

                                                          = 41.326\ cm^2.

#SPJ2

Similar questions