Math, asked by am8039222, 4 months ago

Find the area of quadrilateral ABCD. Here, AC = 22 cm , BM = 3 cm , DN = 3 cm and ⊥

, ⊥ ?​

Attachments:

Answers

Answered by adithyaa24032006
0

Answer:

give me brainlist then I send answer in comment

because when I give correct answer only GEt heart all broke my heart giving me brainlist you get bonous promise from me belive and trust i will not broke your heart

you not give me brainlist you will fail in exam

Answered by Anonymous
153

Answer:

Rɪɢʜᴛ Qᴜᴇsᴛɪᴏɴ :

↝ Find the area of the quadrilateral ABCD.Here, AC = 22 cm, BM = 3 cm,DN = 3 cm, and BM⊥AC, DN⊥AC.

\begin{gathered}\end{gathered}

Gɪɴ :

  • ➛ AC = 22 cm
  • ➛ BM = 3 cm
  • ➛ DN = 3
  • ➛ BM ⊥ AC
  • ➛ DN ⊥ AC

\begin{gathered}\end{gathered}

T Fɪɴ :

  • ➛ Area of ΔADC
  • ➛ Area of ΔABC
  • ➛ Area of quadrilateral ABCD.

\begin{gathered}\end{gathered}

Cɴ :

↝ Here the concept of Area of quadrilateral has been used. We need to calculate the area of quadrilateral ABCD,

↝ So,First we'll calculate the area of ΔABC, and ΔADC and after finding area of ΔABC, and ΔADC, we'll find the area of quadrilateral ABCD.

\begin{gathered}\end{gathered}

Usɪɴɢ Fᴏʀᴍᴜʟᴀs :

{\longrightarrow{\small{\underline{\boxed{\pmb{\sf{Area  \: of  \: quadrilateral \:  ABCD = Area \: of \Delta ABC + Area \: of \: \Delta ADC}}}}}}}

{\longrightarrow{\small{\underline{\boxed{\pmb{\sf{Area \: of \Delta ABC =  \frac{1}{2} \times b \times h}}}}}}}

{\longrightarrow{\small{\underline{\boxed{\pmb{\sf{Area \: of \: \Delta ADC =  \frac{1}{2} \times b \times h}}}}}}}

\begin{gathered}\end{gathered}

Sʟɪɴ :

☼ Finding the area of ΔABC

{\longrightarrow{\small{\underline{\boxed{\pmb{\sf{Area \: of \Delta ABC =  \dfrac{1}{2} \times b \times h}}}}}}}

★ Here :-

  • ➛ b = AC (22 cm)
  • ➛ h = BM (3 cm)

★ Now :-

{\longrightarrow{\small{\sf{Area \: of \Delta ABC =  \dfrac{1}{2} \times b \times h}}}}

{\longrightarrow{\small{\sf{Area \: of \Delta ABC =  \dfrac{1}{2} \times 22\times 3}}}}

{\longrightarrow{\small{\sf{Area \: of \Delta ABC =  \dfrac{1 \times 22 \times 3}{2}}}}}

{\longrightarrow{\small{\sf{Area \: of \Delta ABC =  \dfrac{22 \times 3}{2}}}}}

{\longrightarrow{\small{\sf{Area \: of \Delta ABC =  \dfrac{66}{2}}}}}

{\longrightarrow{\small{\sf{Area \: of \Delta ABC =  \cancel{\dfrac{66}{2}}}}}}

{\longrightarrow{\small{\sf{Area \: of \Delta ABC = 33 \: cm}}}}

{\longrightarrow{\small{\red{\underline{\boxed{\sf{Area \: of \Delta ABC = 33 \:  {cm}^{2}}}}}}}}

∴ The area of ΔABC is 33 cm².

━┅━┅━┅━┅━┅━┅━┅━┅━┅━

☼ Finding the area of ΔADC :-

{\longrightarrow{\small{\underline{\boxed{\pmb{\sf{Area \: of \: \Delta ADC =  \frac{1}{2} \times b \times h}}}}}}}

★ Here :-

  • ➛ b = 22 cm
  • ➛ h = 3 cm

★ Now :-

{\longrightarrow{\small{\sf{Area \: of \: \Delta ADC =  \dfrac{1}{2} \times b \times h}}}}

{\longrightarrow{\small{\sf{Area \: of \: \Delta ADC =  \dfrac{1}{2} \times 22 \times 3}}}}

{\longrightarrow{\small{\sf{Area \: of \: \Delta ADC =  \dfrac{1 \times 22 \times 3}{2}}}}}

{\longrightarrow{\small{\sf{Area \: of \: \Delta ADC =  \dfrac{22 \times 3}{2}}}}}

{\longrightarrow{\small{\sf{Area \: of \: \Delta ADC =  \dfrac{66}{2}}}}}

{\longrightarrow{\small{\sf{Area \: of \: \Delta ADC =   \cancel{\dfrac{66}{2}}}}}}

{\longrightarrow{\small{\sf{Area \: of \: \Delta ADC =  33 \: cm}}}}

{\longrightarrow{\small{\red{\underline{\boxed{\sf{Area \: of \: \Delta ADC =  33 \:  {cm}^{2}}}}}}}}

∴ The area of ΔADC is 33 cm².

━┅━┅━┅━┅━┅━┅━┅━┅━┅━

☼ Now, finding the area of quadrilateral ABCD :-

{\longrightarrow{\small{\underline{\boxed{\pmb{\sf{Area  \: of  \:  ABCD = Area \: of \Delta ABC + Area \: of \: \Delta ADC}}}}}}}

★ Here :-

  • ➛ Area of ΔABC = 33 cm
  • ➛ Area of ΔACD = 33 cm

★ Now :-

{\longrightarrow{\small{\sf{Area  \: of  \:  ABCD = Area \: of \Delta ABC + Area \: of \: \Delta ADC}}}}

{\longrightarrow{\small{\sf{Area  \: of  \:  ABCD = 33 \:  {cm}^{2} + 33 \:  {cm}^{2}}}}}

{\longrightarrow{\small{\sf{Area  \: of  \:  ABCD = 66 \: {cm}^{2}}}}}

{\longrightarrow{\small{\red{\underline{\boxed{\sf{Area  \: of  \:  quadrilateral \: ABCD = 66 \: {cm}^{2}}}}}}}}

∴ The area of quadrilateral ABCD is 66 cm².

\begin{gathered}\end{gathered}

Lᴇᴀʀɴ Mᴏʀᴇ :

\boxed{\begin {minipage}{9cm}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {minipage}}

\underline{\rule{100mm}{0.9mm}}

Attachments:
Similar questions