Math, asked by ramkishanbhardwaj12, 1 year ago

find the area of quadrilateral abcd whose vertices are A(1,2),B(6,2),C(5,3),D(3,4)

Answers

Answered by aravind388
6
I hope it is helpful to you
Attachments:
Answered by mysticd
5

 A(1,2), B(6,2), C(5,3) \:and \: D(3,4) \:are \\vertices \: of \: a \: Quadrilateral \: ABCD

 Join \: A \: to \: C

 i ) Let \: A(1,2) = (x_{1},y_{1}) ,\\ B(6,2) = (x_{2},y_{2}) \: and \: C(5,3) = (x_{3},y_{3})

 Area \:of \: triangle \:ABC \\= \frac{1}{2}|x_{1}(y_{2} - y_{1}) + x_{2}(y_{3} - y_{1}) + x_{3}(y_{1} - y_{2}) |

 = \frac{1}{2}|1(2-3) + 6(3-2)+5(2-2)|\\= \frac{1}{2}|-1+6+0| \\= \frac{1}{2}|5| \\= \frac{5}{2} \: ---(1)

 ii ) Let \: A(1,2) = (x_{1},y_{1}) ,\\ D(3,4) = (x_{2},y_{2}) \: and \: C(5,3) = (x_{3},y_{3})

 Area \:of \: \triangle \:ADC \\= \frac{1}{2}|x_{1}(y_{2} - y_{1}) + x_{2}(y_{3} - y_{1}) + x_{3}(y_{1} - y_{2}) |

 = \frac{1}{2}|1(4-3) + 3(3-2)+5(2-4)|\\= \frac{1}{2}|1+3-10| \\= \frac{1}{2}|-6| \\= \frac{6}{2} \: ---(2)

Therefore.,

 \red{ Area \:of \:the \:  Quadrilateral } \\\green { =area(\triangle {ABC}) + area(\triangle {ADC})}\\= \frac{5}{2} + \frac{6}{2} \\= \frac{ 5 + 6}{2} \\= \frac{11}{2} \\= 5.5 \:cm^{2}

 \red{Area \: of \: the \: ABCD \: Quadrilateral }\green {= \frac{11}{2} \:cm^{2} }

•••♪

Attachments:
Similar questions