Math, asked by sonamnagaraj16, 4 days ago

Find the area of quadrilateral joining the points (3, 2) (5, -2) (2, -5) and (0, 1) in order​

Answers

Answered by s02771freddy
2

Answer:

Let us plot the points roughly and take the vertices in counter clock-wise direction.

Let the vertices be

A(−4,−2),B(−3,−5),C(3,−2) and D(2,3)

Area of the quadrilateral ABCD

=  

2

1

{(x  

1

y  

2

+x  

2

y  

3

+x  

3

y  

1

+x  

4

y  

1

)−(x  

2

y  

1

+x  

3

y  

2

+x  

1

y  

3

+x  

1

y  

4

)}

=  

2

1

[(20+6+9−4)−(6−15−4−12)]

=  

2

1

(31+25)=28 sq.units.

Step-by-step explanation:

Answered by vaishuhima6826275
0

Answer:

Let A(–4,–2), B(–3,–5), C(3,–2) and D(2,3) be the vertices of the quadrilateral ABCD.

Area of a quadrilateral ABCD= Area of △ABC+ Area of △ACD

By using a formula for the area of a triangle =  

2

1

∣x  

1

(y  

2

−y  

3

)+x  

2

(y  

3

−y  

2

)+x  

3

(y  

1

−y  

2

)∣

Area of △ABC

=  

2

1

[−4(−5+2)+−3(−2+2)+3(−2+5)]

=  

2

1

[12+9]

=  

2

21

sq.units      

Area of △ACD=  

2

1

[−4(3+2)+−2(−2+2)+3(−2−3)]

=  

2

1

[−20−15]

=  

2

35

sq.units  

∴Area of quadilateral=  

2

21

+  

2

35

=  

2

56

=28 sq.unit

Step-by-step explanation:

Similar questions