Math, asked by sarimali386, 4 months ago




Find the area of quadrilateral, where AB=4cm, BC=5cm, CD=3cm and DA=4cm and one of its diagonals AC=5cm.

plz tell fast and don't give bad answer​

Attachments:

Answers

Answered by rajputboy072
2

•••••• ::::::: SOLUTION ::::::::••••••

Area of Quadrilateral = Ar of ∆ABC + Ar of ∆ADC

◆ • • Area of ∆ ABC

by using Heron's formula :

\begin{gathered} = \sqrt{s(s - a)(s - b)(s - c} \\ s = \frac{a + b + c}{2} = \frac{3 + 4 + 5}{2} = \frac{12}{2} \\ = 6 \\ \\ ar \: of \: triangle \\ = \sqrt{s(s - a)(s - b)(s - c)} \\ = \sqrt{6(6 - 3)(6 - 4)(6 - 5)} {cm}^{2} \\ = \sqrt{6 \times 3 \times 2 \times 1} {cm}^{2} \\ = \sqrt{6 \times 6} = 6 {cm}^{2} \end{gathered}

=

s(s−a)(s−b)(s−c

s=

2

a+b+c

=

2

3+4+5

=

2

12

=6

aroftriangle

=

s(s−a)(s−b)(s−c)

=

6(6−3)(6−4)(6−5)

cm

2

=

6×3×2×1

cm

2

=

6×6

=6cm

2

◆ • • Area of ∆ ADC

by using Heron's formula

\begin{gathered}s = \frac{a + b + c}{2} \\ = \frac{5 + 4 + 5}{2} = \frac{14}{2} = 7 \\ \\ ar \: of \: triangle \\ = \sqrt{s(s - a)(s - b)(s - c)} \\ = \sqrt{7(7 - 5)(7 - 4)(7 - 5)} \\ = \sqrt{7 \times 2 \times 3 \times 2} \\ = 2 \sqrt{21} \ {cm}^{2} \\ = 2 \times 4.58 = 9.16 {cm}^{2} \end{gathered}

s=

2

a+b+c

=

2

5+4+5

=

2

14

=7

aroftriangle

=

s(s−a)(s−b)(s−c)

=

7(7−5)(7−4)(7−5)

=

7×2×3×2

=2

21

cm

2

=2×4.58=9.16cm

2

now ,

AREA of Quadrilateral = ar of ∆ABC + ar of ∆ADC

\begin{gathered} =( 6 + 9.16) {cm}^{2} \\ = 15.16 {cm}^{2} \\ = 15.2 {cm}^{2} (approx.)\end{gathered}

=(6+9.16)cm

2

=15.16cm

2

=15.2cm

2

(approx.)

So , the area of Quadrilateral ABCD is 15.2cm sq.

I hope

this helps

you.

Answered by Anonymous
31

Answer:

hey mate ur answer is 15.2cm²

Similar questions