Hindi, asked by rsushila938, 11 months ago

find the area of rectangle l-1.5m b-50 cm​

Answers

Answered by FIREBIRD
23

Explanation:

Length = 1.5m

= 150 cm

Breadth = 50 cm

area = l × b

= 150 × 50

= 7500 cm²

= 0.75 m²

#answerwithquality #BAL

Answered by Anonymous
303

Answer:

Given

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}&\bf\:Given - \begin{cases} &\sf  \star{Lenght  \: of \:  Rectangle = 1.5 m }\\& \sf \star{ Breath \:  of  \: Rectangle = 50 cm}\end{cases}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

  ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

To Find

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}&\bf\:To \: Find  - \begin{cases} &\sf \star Area  \: of \:  Rectangle \end{cases}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Using Formula

{ : \implies \bf{Area \: of \: Rectangle} =  \sf{Length × Breadth} }

  ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Solution

Here the length is in m and the breadth is in cm.

So we convert the length into cm.

As we know.

:   \implies\sf{1 \: m = 100 \: cm}

: \implies\sf{1.5 \: m = 1.5 \times 100  }  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf {= 150 \: cm}

  ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Now Finding Area of Rectangle by using formula

:  \implies \sf{Area = 150 \:  cm × 50  \: cm}

: \implies \sf{Area = 7500} \:  {cm}^{2}

  ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Coverting Area cm to m.

As we know.

:  \implies\sf{ 1 \: cm = \dfrac{1}{100} } \: m

: \implies \sf 7500 \: {cm}^{2}  =  \dfrac{7500}{100}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \sf= 75 \:  {cm}^{2}

 \Large \underline{\boxed{\frak \pink{Area} = \sf\purple{75 \:  {cm}^{2}}}}

  ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Therefore

The area of rectangle is 75 cm².

  ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

More Useful formulae

\small\begin{gathered}\begin{gathered}  \bigstar \: \bf \underline{More \: Useful \: formulae} \: \bigstar\\ \begin{gathered} \\ {\boxed{\begin{array}{cccc}{\star\small\sf{Perimeter \:  of  \: Rectangle = 2(Length + Breadth)}} \\ \\  {\star\small \sf{Diagonal \: of \: Rectangle = \sqrt{ {Length }^{2} + { Breadth}^{2} }}} \\ \\  \star\small\sf{Area \: of \: Square } = {a}^{2} \\ \\  \star\small\sf{Perimeter \: of \: Square = 4a } \\  \\ \star\small\sf{Diagonal \: of \: Square = a \sqrt{2} }\end{array}}}\end{gathered}\end{gathered}\end{gathered}

Similar questions