Math, asked by hema2604, 3 months ago

find the area of rectangle whose side is 48 m and diagonal is 50 m​

Answers

Answered by dharmendraratankator
2

Step-by-step explanation:

area of rectangle = L×B

therefore 48×50=

2400

Answered by ShírIey
7

\starᴅɪᴀɢʀᴀᴍ

⠀⠀

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(5,0){2}{\line(0,1){3}}\multiput(0,0)(0,3){2}{\line(1,0){5}}\put(0.03,2.74){\framebox(0.25,0.25)}\put(4.74,0.01){\framebox(0.25,0.25)}\put(2,-0.7){\sf\large 48m}\put(-0.5,-0.4){\bf A}\put(-0.5,3.2){\bf D}\put(5.3,-0.4){\bf B}\put(5.3,3.2){\bf C}\qbezier(0,0)(0,0)(5,3)\put(1.65,1.8){\sf\large 50 m}\put(5.5,1.5){\sf\large 14m}\end{picture}

⠀⠀⠀━━━━━━━━━━━━━━━━━━⠀⠀⠀

\frak{Given}\begin{cases}\sf{\:\;\:One \: side_{\:(rectangle)} = 48 \: m}\\\sf{\:\:\: Diagonal_{\:(rectangle)} = 50\: m}\end{cases}

⠀⠀

❒ Let ABCD be the rectangle. Then,

  • AB = 48 m
  • AC = 50 m

⠀⠀

Now, In ∆ABC

⠀⠀⠀⠀⠀⠀

\bigstar\:{\underline{\sf{Using\; Pythagoras\; Theroem\;\::}}}\\ \\

⠀⠀

:\implies\sf AC^2 = AB^2 + BC^2 \\\\\\:\implies\sf 50^2 = 48^2 + BC^2  \\\\\\:\implies\sf  BC^2 = 50^2 - 48^2 \\\\\\:\implies\sf BC^2 =  2500 - 2304 \\\\\\:\implies\sf BC^2 = 196 \\\\\\:\implies\sf  BC = \sqrt{196} \\\\\\:\implies{\underline{\boxed{\sf{\pink{BC = 14 \: m}}}}}\:\bigstar

\therefore\;{\underline{\sf{Here, \: we \: get \: BC \:is\; \bf{14 \: cm}.}}}

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━⠀⠀

\underline{\bf{\dag} \:\mathfrak{As \: we \: know \: that\; :}}

⠀⠀

\bf{\dag}\quad\large\boxed{\sf Area_{\: (rectangle)} = Length \times Breadth }

⠀⠀

\bf{Here}\begin{cases}\sf{\:\:\: Length_{\:(rectangle)} = 48 \: m}\\\sf{\:\:\; Breadth_{\:(rectangle)} = 14 \: m}\end{cases}

⠀⠀

Therefore,

⠀⠀

:\implies\sf Area_{\:(rectangle)} = 48 \times 14 \\\\\\:\implies{\underline{\boxed{\frak{\purple{672\:m^2}}}}}\:\bigstar

⠀⠀

\therefore\;{\underline{\sf{Hence,\;area\:of\: rectangle\:is\; \bf{672\;m^2}.}}}

Similar questions