Math, asked by abhishekkumar2436, 4 months ago

find the area of rectangle with sides (9x^2+xy+1) units and 6xy-4​

Answers

Answered by Ladylaurel
7

Answer :

The area of rectangle is 5x³y + 6x²y² - 36x² + 2xy - 4

Step-by-step explanation :

We know that,

Area of rectangle = Length × Breadth

Therefore, By putting the values,

: ⟹ ( 9x² + xy + 1 ) × ( 6xy - 4 )

: ⟹ ( 9x² )( 6xy ) + ( 9x² )( - 4 ) + ( xy )( 6xy ) + ( xy )( - 4 ) + ( 1 )( 6xy ) + ( 1 )( - 4 )

: ⟹ 54x³y + 36x² + 6x²y² - 4xy + 6xy - 4

: ⟹ 54x³y + 6x²y² + 36x² - 2xy - 4

∴ The area of rectangle is 5x³y + 6x²y² - 36x² + 2xy - 4

Now, Verification

⟹ ( 9x² + xy + 1 ) × ( 6xy - 4 ) = 5x³y + 6x²y² - 36x² + 2xy - 4

⟹ 54x³y + 36x² + 6x²y² - 4xy + 6xy - 4 = 5x³y + 6x²y² - 36x² + 2xy - 4

⟹ 5x³y + 6x²y² - 36x² + 2xy - 4 = 5x³y + 6x²y² - 36x² + 2xy - 4

L.H.S = R.H.S

Hence, Verified !

Similar questions