find the area of rectangle with sides (9x^2+xy+1) units and 6xy-4
Answers
Answered by
7
Answer :
The area of rectangle is 5x³y + 6x²y² - 36x² + 2xy - 4
Step-by-step explanation :
We know that,
Area of rectangle = Length × Breadth
Therefore, By putting the values,
: ⟹ ( 9x² + xy + 1 ) × ( 6xy - 4 )
: ⟹ ( 9x² )( 6xy ) + ( 9x² )( - 4 ) + ( xy )( 6xy ) + ( xy )( - 4 ) + ( 1 )( 6xy ) + ( 1 )( - 4 )
: ⟹ 54x³y + 36x² + 6x²y² - 4xy + 6xy - 4
: ⟹ 54x³y + 6x²y² + 36x² - 2xy - 4
∴ The area of rectangle is 5x³y + 6x²y² - 36x² + 2xy - 4
Now, Verification
⟹ ( 9x² + xy + 1 ) × ( 6xy - 4 ) = 5x³y + 6x²y² - 36x² + 2xy - 4
⟹ 54x³y + 36x² + 6x²y² - 4xy + 6xy - 4 = 5x³y + 6x²y² - 36x² + 2xy - 4
⟹ 5x³y + 6x²y² - 36x² + 2xy - 4 = 5x³y + 6x²y² - 36x² + 2xy - 4
L.H.S = R.H.S
Hence, Verified !
Similar questions