Math, asked by shivamthapa820p5ijfy, 4 months ago

Find the area of rectangular plot whose length and breadth are 12cm and 4cm​

Answers

Answered by rishikasahay23
0

Answer:

length= 12 cm

breadth= 4cm

area=length×breadth

=12×4cm²

=48cm²

Answered by BrainlyRish
2

Diagram :

  • \setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(5,0){2}{\line(0,1){3}}\multiput(0,0)(0,3){2}{\line(1,0){5}}\put(0.03,0.02){\framebox(0.25,0.25)}\put(0.03,2.75){\framebox(0.25,0.25)}\put(4.74,2.75){\framebox(0.25,0.25)}\put(4.74,0.02){\framebox(0.25,0.25)}\multiput(2.1,-0.7)(0,4.2){2}{\sf\large 12  cm}\multiput(-1.4,1.4)(6.8,0){2}{\sf\large 6 cm}\put(-0.5,-0.4){\bf A}\put(-0.5,3.2){\bf D}\put(5.3,-0.4){\bf B}\put(5.3,3.2){\bf C}\end{picture}

Given : Length of Rectangular Plot is 12 cm and Breadth of Rectangular plot is 4 cm .

Need To Find : Area of Rectangular plot .

\dag\frak{\underline { As,\:We\:know\:that\::}}\\

\star\boxed {\pink{\sf{ Area _{(Rectangle)} = l \times b }}}\\

Where ,

  • l is the Length of Rectangular Plot and b is the Breadth of Rectangular plot.

⠀⠀⠀⠀⠀⠀\underline {\bf{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\

:\implies \sf{ Area_{(Rectangle)} = 12 \times 4 }\\\\\underline {\boxed{\pink{ \mathrm { Area_{(Rectangle)} = 48\: cm^{2}}}}}\:\bf{\bigstar}\\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm { Hence\:Area \:of\:Rectangular \:plot\:is\:\bf{48\: cm^{2}}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\large {\boxed{\sf{\mid{\overline {\underline {\star More\:To\:know\::}}}\mid}}}\\\\

\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions