Math, asked by talpadadilip417, 1 day ago

find the area of region \rm \left\{(x, y) \mid   x^{2} \leq y \leq x\right\}
\\ \rule{300pt}{0.1pt}

Answer with proper explanation.

Don't Dare for spam.

→ Expecting answer from :

★ Moderators
★ Brainly stars and teacher
★ Others best users ​​​​​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given region is

\rm \left\{(x, y) \mid x^{2} \leq y \leq x\right\} \\

So, given curves are

\rm \:  {x}^{2} = y -  -  - (1) \\

and

\rm \: y = x -  -  - (2) \\

Step :- 1 Point of intersection of two curves

On equating equation (1) and (2), we get

\rm \:  {x}^{2} = x \\

\rm \:  {x}^{2}  -  x  = 0\\

\rm \:  x(x - 1)  = 0\\

\rm\implies \:x = 0 \:  \:  \: or \:  \:  \: x = 1 \\

Hᴇɴᴄᴇ,

➢ Pair of points of the intersection of two curves are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 0 \\ \\ \sf 1 & \sf 1 \end{array}} \\ \end{gathered}

Step :- 2 Curve Sketching

The curve  x^2 = y represents the upper parabola having vertex at (0, 0) and axis along y - axis.

The curve y = x is a line passes through (0, 0) and intersects the other curve at (0, 0) and (1, 1)

See the attachment.

Step : - 3 Required Area

The required area between the two curves is

\rm \:  =  \: \displaystyle\int_{0}^{1}\rm  [y_{line} - y_{parabola}] \: dx \\

\rm \:  =  \: \displaystyle\int_{0}^{1}\rm  [x -  {x}^{2} ] \: dx \\

\rm \:  =  \: \bigg[\dfrac{ {x}^{2} }{2} -  \dfrac{ {x}^{3} }{3}  \bigg] _{0}^{1} \\

\rm \:  =  \: \dfrac{1}{2}  - \dfrac{1}{3}  \\

\rm \:  =  \: \dfrac{3 - 2}{6}  \\

\rm \:  =  \: \dfrac{1}{6}   \: square \: units\\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Attachments:
Answered by nihasrajgone2005
1

\huge\red{A}\pink{N}\orange{S} \green{W}\blue{E}\gray{R} =

Given region is

\begin{gathered}\rm \left\{(x, y) \mid x^{2} \leq y \leq x\right\} \\ \end{gathered} </p><p>{(x,y)∣x </p><p>2</p><p> ≤y≤x}

So, given curves are

\begin{gathered}\rm \: {x}^{2} = y - - - (1) \\ \end{gathered} </p><p>x </p><p>2</p><p> =y−−−(1)

and

\begin{gathered}\rm \: y = x - - - (2) \\ \end{gathered} </p><p>y=x−−−(2)</p><p>

Step :- 1 Point of intersection of two curves

On equating equation (1) and (2), we get

\begin{gathered}\rm \: {x}^{2} = x \\ \end{gathered} </p><p>x </p><p>2</p><p> =x

\begin{gathered}\rm \: {x}^{2} - x = 0\\ \end{gathered} </p><p>x </p><p>2</p><p> −x=0

\begin{gathered}\rm \: x(x - 1) = 0\\ \end{gathered} </p><p>x(x−1)=0

\begin{gathered}\rm\implies \:x = 0 \: \: \: or \: \: \: x = 1 \\ \end{gathered} </p><p>⟹x=0orx=1

Hᴇɴᴄᴇ,

➢ Pair of points of the intersection of two curves are shown in the below table.

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf x &amp; \bf y \\ \frac{\qquad \qquad}{} &amp; \frac{\qquad \qquad}{} \\ \sf 0 &amp; \sf 0 \\ \\ \sf 1 &amp; \sf 1 \end{array}} \\ \end{gathered}\end{gathered} </p><p>x</p><p></p><p> </p><p>0</p><p>1</p><p></p><p>  </p><p>y</p><p></p><p> </p><p>0</p><p>1</p><p>Step :- 2 Curve Sketching

The curve x^2 = yx

2

=y represents the upper parabola having vertex at (0, 0) and axis along y - axis.

The curve y = x is a line passes through (0, 0) and intersects the other curve at (0, 0) and (1, 1)

See the attachment.

Step : - 3 Required Area

The required area between the two curves is

\begin{gathered}\rm \: = \: \displaystyle\int_{0}^{1}\rm [y_{line} - y_{parabola}] \: dx \\ \end{gathered} </p><p>=∫ </p><p>0</p><p>1</p><p></p><p> [y </p><p>line</p><p></p><p> −y </p><p>parabola</p><p></p><p> ]dx

\begin{gathered}\rm \: = \: \displaystyle\int_{0}^{1}\rm [x - {x}^{2} ] \: dx \\ \end{gathered} </p><p>=∫ </p><p>0</p><p>1</p><p></p><p> [x−x </p><p>2</p><p> ]dx</p><p>

\begin{gathered}\rm \: = \: \bigg[\dfrac{ {x}^{2} }{2} - \dfrac{ {x}^{3} }{3} \bigg] _{0}^{1} \\ \end{gathered} </p><p>=[ </p><p>2</p><p>x </p><p>2</p><p> </p><p></p><p> − </p><p>3</p><p>x </p><p>3</p><p> </p><p></p><p> ] </p><p>0</p><p>1

\begin{gathered}\rm \: = \: \dfrac{1}{2} - \dfrac{1}{3} \\ \end{gathered} </p><p>= </p><p>2</p><p>1</p><p></p><p> − </p><p>3</p><p>1</p><p>

\begin{gathered}\rm \: = \: \dfrac{3 - 2}{6} \\ \end{gathered} </p><p>= </p><p>6</p><p>3−2

\begin{gathered}\rm \: = \: \dfrac{1}{6} \: square \: units\\ \end{gathered} </p><p>= </p><p>6</p><p>1</p><p></p><p> squareunits</p><p></p><p> </p><p></p><p>\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) &amp; \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} &amp; \frac{\qquad \qquad}{} \\ \sf k &amp; \sf kx + c \\ \\ \sf sinx &amp; \sf - \: cosx+ c \\ \\ \sf cosx &amp; \sf \: sinx + c\\ \\ \sf {sec}^{2} x &amp; \sf tanx + c\\ \\ \sf {cosec}^{2}x &amp; \sf - cotx+ c \\ \\ \sf secx \: tanx &amp; \sf secx + c\\ \\ \sf cosecx \: cotx&amp; \sf - \: cosecx + c\\ \\ \sf tanx &amp; \sf logsecx + c\\ \\ \sf \dfrac{1}{x} &amp; \sf logx+ c\\ \\ \sf {e}^{x} &amp; \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}\end{gathered} </p><p>f(x)</p><p></p><p> </p><p>k</p><p>sinx</p><p>cosx</p><p>sec </p><p>2</p><p> x</p><p>cosec </p><p>2</p><p> x</p><p>secxtanx</p><p>cosecxcotx</p><p>tanx</p><p>x</p><p>1</p><p></p><p> </p><p>e </p><p>x</p><p> </p><p></p><p>  </p><p>∫f(x)dx</p><p></p><p> </p><p>kx+c</p><p>−cosx+c</p><p>sinx+c</p><p>tanx+c</p><p>−cotx+c</p><p>secx+c</p><p>−cosecx+c</p><p>logsecx+c</p><p>logx+c</p><p>e </p><p>x</p><p> +c

Attachments:
Similar questions