Math, asked by manjotmattu38, 4 months ago

find the area of rhombus if its vertices 3,0 4,5 -1,4 -2,-1 taken in order ​

Answers

Answered by amrutanshu50
1

Please refer to the above image for solution!!

Thanks!

Attachments:
Answered by XxGoutamxX
0

Answer:

\boxed {\mathsf{\blue {24 \: sq. \: units}}}

Step-by-step explanation:

Let A(3,0), B(4,5), C(-1,4) and D(-2,-1) be the vertices of the rhombus ABCD.

\mathsf {∴ \: Diagonal,\: AC = \sqrt {(-1,-3)^{2}+(4-0)^{2}}}

\mathsf {\sqrt {(-4)^{2}+4^{2}}}

\mathsf {\sqrt {32}}

\mathsf {4 \sqrt {2} units}

\mathsf {Diagonal,\: BD = \sqrt {(-2,-4)^{2}+(-1-5)^{2}}}

\mathsf {\sqrt {(-6)^{2}+(-6)^{2}}}

\mathsf {\sqrt {36+36}}

\mathsf {\sqrt {72}}

\mathsf {6 \sqrt {2} units}

\mathsf {∴ \: Area \: of \: the \: rhombus \: ABCD}

\mathsf {\dfrac {1}{2} \times Product \: of \: its \: diagonals }

\mathsf {\dfrac {1}{2} \times \: AC \: \times \: BD}

\mathsf {\dfrac {1}{2} \times 4 \sqrt {2} \times 6 \sqrt{2}}

\mathsf {2 \times 6 \times \sqrt {2} \times \sqrt{2}}

\mathsf {12 \times 2}

\mathsf {24 \: sq. \: units}

Similar questions