Math, asked by ShreyaPandey21, 1 year ago

Find the area of rhombus if its vertices are (3,0) (4,5) (-1,4) (-2,-1) taken in order .
[Hint : Area of rhombus =
1/2 (product of diagonals)


Solve the above question .

Answers

Answered by STK0
12

Let (3,0) (4,5) (-1,4) (-2,-1) are the vertices A,B,C,D of a rhombus ABCD.

ʟᴇɴɢᴛʜ ᴏf ᴅɪᴀɢᴏɴᴀʟ ᴀᴄ.

= √[3-(-1)]² + (0-4)²

= √16 + 16

= 4√2

ʟᴇɴɢᴛʜ ᴏf ᴅɪᴀɢᴏɴᴀʟ Bc

= √[4-(-2)]² + [5-(-1)]²

= √36 + 36

= 6√2

Therefore, Area of rhombus ABCD,

= ½ × 4√2 × 6√2

= 24 units ...✔

Answered by Anonymous
26

SOLUTION

Let (3,0), (4,5),(-1,4) & (-2,-1) are the vertices A,B,C,D of a rhombus ABCD.

Length of diagonal AC

 =  >  \sqrt{[3 - ( -1)] {}^{2}  + (0 - 4) {}^{2} }  \\  \\  =  >  \sqrt{16 + 16}  \\  \\  =  >  \sqrt{32}  = 4 \sqrt{2}

Length of diagonal BD

 =  &gt;  \sqrt{</u></strong><strong><u>[</u></strong><strong><u>4 - ( - 2)</u></strong><strong><u>]</u></strong><strong><u>{}^{2} + </u></strong><strong><u>[</u></strong><strong><u>5 - ( - 1)</u></strong><strong><u>]</u></strong><strong><u> {}^{2}  }  \\  \\  =  &gt; \sqrt{ {6}^{2} +  {6}^{2}  }  \\  \\  =  &gt;   \sqrt{36 + 36}  =  \sqrt{72}  \\  \\ =  &gt; 6 \sqrt{2}

Therefore,

Area of rhombus ABCD

 =  &gt;  \frac{1}{2}  \times 4 \sqrt{2} \times 6 \sqrt{2}   \\  \\  =  &gt; 2 \times 2 \times 6 \\  \\  =  &gt; 24 \: square \: units

Hope it helps ☺️

Attachments:
Similar questions