Math, asked by Astro2596, 11 months ago

Find the area of rhombus the length of whose diqgonal are 16 cm and 24 cm respectively

Answers

Answered by assassin2003
0

Answer:

AREA OF RHOMBUS=1/2×D1×D2

1/2×16×24=192

Answered by Brâiñlynêha
0

\huge\mathbb{SOLUTION:-}

\bf{Given:-}\begin{cases}\sf{Diagonal\:of\: rhombus}\\ \sf{\implies 16cm\:and\:\:24cm}\end{cases}

\huge\star{\sf{\red{To\:Find:-}}}

  • we have to find the area of rhombus

\boxed{\star{\sf{\blue{Area\:of\: rhombus=\frac{1}{2}\times (product\:of\: Diagonals)}}}}

\bf\underline{\underline{According\:To\: Question:-}}

\sf\implies Area\:of\: rhombus=\frac{1}{2}\times 16\times 24\\ \\ \sf\implies Area\:of\: rhombus=\frac{16\times 24}{2}\\ \\ \sf\implies Area\:of\: rhombus=\cancel{\frac{384}{2}}\\ \\ \sf\implies Area\:of\: rhombus=192cm{}^{2}

\underline{\boxed{\sf{\purple{Area\:of\: rhombus=192cm{}^{2}}}}}

\bf\underline{\underline{SOME\:EXTRA\: INFORMATION:-}}

\sf 1) Area\:of\: rhombus=\frac{1}{2}\times (product\:of\: Diagonals)\\ \\ \sf 2) Area\:of\: parallelogram=base\times height\\ \\ \sf\ 3) Area\:of\: trapezium=\frac{1}{2}\times height\times (sum\:of\: parallel\:sides)\\ \\ \sf 4) Area \:of\: quadrilateral=\frac{1}{2}\times diagonal (h_1+h_2)

#BAL

#answerwithquality

Similar questions