Math, asked by tanejap13, 3 months ago

find the area of rhombus whose diognals areas of length 6cm and 3cm​

Answers

Answered by reenagrg669
0

Hope! answer is helpful for you...

Attachments:
Answered by mathdude500
4

\begin{gathered}\begin{gathered}\bf \: Given - \begin{cases} &\sf{Diagonal  \: of \:  rhombus,d_1 = 6 \: cm} \\ &\sf{Diagonal \:  of  \: rhombus,d_2 = 3 \: cm} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \:To\: find\:- \begin{cases} &\sf{Area_{(rhombus)}}  \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\Large{\sf{{\underline{Formula \: Used - }}}}  \end{gathered}

 \boxed{ \bf{ \: Area_{(rhombus)} = \dfrac{1}{2}  \times d_1 \times d_2}}

where,

 \:  \:  \:  \:  \:  \:  \bull \:  \sf \: d_1 = Diagonal \:  of \:  rhombus

 \:  \:  \:  \:  \:  \:  \bull \:  \sf \: d_2 = Diagonal \:  of \:  rhombus

\large\underline{\sf{Solution-}}

Given that

 \:  \:  \:  \:  \:  \:  \bull \:  \sf \: d_1 = Diagonal \:  of \:  rhombus = 6 \: cm

 \:  \:  \:  \:  \:  \:  \bull \:  \sf \: d_2 = Diagonal \:  of \:  rhombus = 3 \: cm

Therefore,

  • Area of rhombus is

\rm :\longmapsto\:Area_{(rhombus)} = \dfrac{1}{2}  \times d_1 \times d_2

\rm :\longmapsto\:Area_{(rhombus)} = \dfrac{1}{2}  \times 6 \times 3

\rm :\longmapsto\:Area_{(rhombus)} = 9 \:  {cm}^{2}

Additional Information :-

Rhombus :-

  • A rhombus is a special case of a parallelogram, and it is a four-sided quadrilateral.

In a rhombus,

  • Opposite sides are parallel.

  • The opposite angles are equal.

  • All the sides of a rhombus are equal in length.

  • The diagonals bisect each other at right angles.

  • The rhombus is also called a diamond or rhombus diamond.

 \boxed{ \bf{ \: Area_{(rhombus)} = base \times height}}

 \boxed{ \bf{ \: Perimeter_{(rhombus)} = 4 \times side}}

Similar questions