Math, asked by guptadileep059, 8 months ago

find the area of right triangle whose hypotenuse is 13 cm and one side is 5cm.​

Answers

Answered by BrainlyIAS
16

Answer

Area of the rectangle = 30 cm²

Given

One side of right angled triangle is 5 cm

Hypotenuse of right angled triangle is 13 cm

To Find

Area of right angled triangle

Have a look at

We have one side and hypotenuse of right angles triangle , so to find other side we need to apply Pythagoras theorem .

Area of triangle ,

\rm{\pink{A=\dfrac{1}{2}\times b\times h\ \; \bigstar}}

Solution

Apply pythagoras theorem for finding remaining side of right angled triangle ,

Let that be , " x "

\to\ \rm x^2+5^2=13^2\\\\\to\ \rm x^2+25=169\\\\\to\ \rm x^2=169-25\\\\\to\ \rm x^2=144\\\\\to\ \rm{\green{x=12\ cm\ \; \bigstar}}

So , base of the triangle = 12 or 5

height of the triangle = 5 or 12

Apply formula ,

\to\ \rm A=\dfrac{1}{2}\times 5\times 12\\\\\to\ \rm A=5\times 6\\\\\to\ \rm{\blue{A=30\ cm^2\ \; \bigstar}}

So , Area of the rectangle = 30 cm²

Answered by Bᴇʏᴏɴᴅᴇʀ
15

ANSWER:-

Given:-

One side of rght. angled triangle(\triangle)=\bf{5 \: cm}

Hypotenuse[H] of right angled triangle= \bf{13 \: cm}

To Find:-

Area of right angled triangle

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

FORMULA:-

\boxed{\bf{A=\dfrac{1}{2}\times b\times h}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Applying Pythagoras THEOREM:-

\boxed{\bf{(Perpendicular)^2 + (Base)^2 = (Hypotenuse)^2}}

Assume that side be, \bf{" x "}

\longrightarrow{x^2+5^2=13^2}

\longrightarrow{x^2+25=169}

\longrightarrow{x^2=169-25}

\longrightarrow{x^2=144}

\implies \bf{x=12 \: cm}

Applying formula of Area:-

A=\dfrac{1}{2}\times 5\times 12

 A=5\times 6

\large{\bf{A=30\ cm^2}}

•Therefore,

\large \bf {Area \: of \: the \: rectangle = 30 cm^2}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions