Math, asked by kajalsonar2001, 1 year ago

find the area of ring between two concentric circles whose circumference are 75cm and 55cm​

Answers

Answered by ashish9864p6meyl
6

Answer:

Step-by-step explanation:

Answer:Area of Ring Between two concentric circles is 770 cm²

Step-by-step explanation:

Given: Circumference of two circle are 88 cm  and 132 cm

To Find: Area of ring between two concentric circles.

Using this formula first we calculate the radius of both circles.

Circumference of 1st circle=2πr

88=2 x 22/7 x r

r=88 x 7/44

r=2 x 7

r=14cm

Circumference of 2nd circle = 2πR

132 = 2 X 22/7 X R

R=132 X 7/44

R = 21 cm

Area of the ring = Area of 2nd circle - Area of 1st circle

                         = π r*2-πR*2

                         = π(r*2-R*2)

                         = 22/7(21*2-14*2)

                         = 22/7 X 245

                         = 22 X 35

                         = 770 cm²

Therefore, Area of Ring Between two concentric circles is 770 cm²

Answered by Rudra0936
30

Answer:

  • We have the circumference of two concentric circles 75cm and 55cm

 \bold{we \: know \: that \: circumference \: of \: a \: circle \: is \: given \: by   =  > \: 2\pi \: r}

So, in 1 st case 2πr = 75 cm

 =  > 2 \times  \frac{22}{7}  \times r = 75 \\  \\  =  >r =  \frac{75 \times7}{44}  \\  \\  =  > r =  \frac{375}{44}  \\  \\  =  > r = 8.5cm

Similarly, in 2 nd case 2πr= 55cm

 =  > 2\pi \: r = 55 \\  \\   =  >2 \times  \frac{22}{7}  \times r = 55 \\  \\  =  > r =  \frac{55 \times 7}{44} \\  \\  =  >r =  \frac{385}{44}  \\  \\  =  > r = 0.7cm

So ,the area if the ring is equal to the subtraction of the area of two concentric circles✓

 \red{area \: of \: the \: ring \: is \: as \: follows \: }

 =  >  \green{area \: of \: ring = } \bold{(\pi   \times \: r1 ^{2})  - (\pi \times \: r2 ^{2}) }

 =  >  \green{area \: of \: \:ring \:  = } \bold({ \frac{22}{7} \times (8.5)^{2}  \times} )  - ( \frac{22}{7}  \times (0.7)^{2} )

 =  >  \green{area \: of \: the \: ring} =  \bold{ (\frac{22}{7}  \times 72.25) -( \frac{22}{7}  \times 0.49)  }

 =   >  \green{area \: of \: the \: ring = } \bold{ \frac{1509.5}{7} -  \frac{10.78}{7}  } \\  \\  =  >  \green{area \: of \: the \: ring = } \bold{215.6 - 1.5}

 =  >   \boxed{\green{area \:of \:the \: ring = } \bold{ \red{214.1m ^{2} }}}

Similar questions