Math, asked by phenomenalshwet, 2 months ago

find the area of sector of a circle of radius 7cm if corresponding arc length is 6.2cm​

Answers

Answered by XxItzAnvayaXx
13

\boxed {\underline  {\mathbb {FINAL\:ANSWER:-}}}

\boxed {area\:of\:sector=6.19 cm^{2}}

\boxed {\underline  {\mathbb {GIVEN:-}}}

  • radius of circle is 7 cm
  • arc is 6.2 cm

\boxed {\underline  {\mathbb {TO\:FIND:-}}}

area of sector of a circle

\boxed {\underline  {\mathbb {FORMULA\:USED:-}}}

Length of arc =\frac{ \theta }{360} \pi r

Area of sector =\frac{\theta}{360} \pi r^{2}\\

\boxed {\underline  {\mathbb {SOLUTION:-}}}

Arc length (length of sector\arc) is 6.2 cm

Radius of circle is 7 cm

\frac{ \theta }{360} \pi r  = 6.2 \\

\frac{ \theta }{360} \times \frac{22}{7} \times 7 = 6.2\\

\frac {\theta \times 22 \times 7}{360}=6.2\\

\frac {154 \theta }{360}=6.2\\

\theta = \frac{6.2 \times 360} {154}

\theta = 14.49

Now as we got \theta so let’s put in sector formula to get area of sector

Area of sector =\frac{\theta}{360} \pi r^{2}\\

= \frac{14.49}{360} \times \frac{22}{7} \times 7^{2}\\

= \frac{ 15620.22 }{2520}\\

= 6.19 cm^{2}

hence area of sector \boxed {\Longrightarrow 6.19 cm^{2}}

⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔

Answered by Anonymous
0

XxAnvayaXx ne accha answer diya hai use brainlist bana do aur use follow kar lo

Similar questions