Math, asked by manyasinghdlh, 1 month ago

Find the area of sector of circle of radius 3.5 and angle of the sector is 90'​

Answers

Answered by Anonymous
16

Answer:

Given :-

  • A circle whose radius is 3.5 cm and the angle of the sector is 90°.

To Find :-

  • What is the area of sector of circle.

Formula Used :-

\clubsuit Area Of Sector Of Circle Formula :

\mapsto \sf\boxed{\bold{\pink{Area\: Of\: Sector =\: \dfrac{\theta}{360^{\circ}} \times {\pi}r^2}}}

where,

  • \sf \theta = Central Angle
  • r = Radius
  • π = pie or 22/7

Solution :-

Given :

  • Central Angle \bf (\theta) = 90°
  • Radius (r) = 3.5 cm

According to the question by using the formula we get,

\longrightarrow \sf Area\: Of\: Sector =\: \dfrac{90^{\circ}}{360^{\circ}} \times \dfrac{22}{7} \times (3.5)^2

\longrightarrow \sf Area\: Of\: Sector =\: \dfrac{\cancel{90^{\circ}}}{\cancel{360^{\circ}}} \times \dfrac{22}{7} \times 3.5 \times 3.5

\longrightarrow \sf Area\: Of\: Sector =\: \dfrac{1}{4} \times \dfrac{22}{7} \times 12.25

\longrightarrow \sf Area\: Of\: Sector =\: \dfrac{22}{28} \times 12.25

\longrightarrow \sf Area\: Of\: Sector =\: \dfrac{269.5}{28}

\longrightarrow \sf\bold{\red{Area\: Of\: Sector =\: 9.625\: cm^2}}

{\small{\bold{\underline{\therefore\: The\: area\: of\: sector\: of\: circle\: is\: 9.625\: cm^2\: .}}}}

Similar questions