Math, asked by Srijith3568, 1 year ago

Find the area of sector when perimeter of sector with radius 14cm is 68cm

Answers

Answered by ALTAF11
14

[ Figure in the attachment ]

Given :- Radius ( r ) of circle = 14 cm

perimeter of sector = 68 cm

Solution :-

perimeter \: of \: sector = lenght \: of \: sector \:  + 2r

68 =  \frac{ \alpha }{360} 2\pi \: r \:  + 2r

68 =  2 \times 14( \frac{ \alpha }{360}  \times  \frac{22}{7}  + 1)


 \frac{17}{7}  =  \frac{11 \alpha  + 1260}{1260}

17 =  \frac{11 \alpha  + 1260}{180}

3060 = 11 \alpha  + 1260

1800 = 11 \alpha


 \frac{1800}{11}  =  \alpha

_________________

• area of sector =
 \frac{ \alpha }{360}  \times \pi \:  {r}^{2}
 =  \frac{ \frac{1800}{11} }{360}  \times  \frac{22}{7}  \times 14

 =  \frac{1800}{11}  \times  \frac{1}{360}  \times  \frac{22}{7}  \times 14

 = 20 \:  {cm}^{2}
Attachments:
Answered by SerenaBochenek
5

Answer:

Area of sector is 476 square centimeter.

Step-by-step explanation:

Given the perimeter of sector with radius 14cm is 68cm.

we have to find the area of sector.

\text{Length of arc=}\frac{\theta}{360^{\circ}}\times2\pi r

\frac{L}{2\pi r}=\frac{\theta}{360^{\circ}}    →     (1)

\text{Area of sector =}\frac{\theta}{360^{\circ}}\times \pi r^2

Using equation (1)

\text{Area = }\frac{L}{2\pi r}\times \pi r^2\\\\=\frac{L}{2}\times r = \frac{68}{2}\times14=476cm^2

Hence, area of sector is 476 square centimeter.

Similar questions