Math, asked by swatiban7775, 15 days ago

Find the area of sector whose angle is 120°and radius is 21cm

Answers

Answered by Anonymous
89

Answer:

Given :-

  • A circle whose angle is 120° and the radius is 21 cm.

To Find :-

  • What is the area of sector.

Formula Used :-

\clubsuit Area Of Sector Formula :

\mapsto \sf\boxed{\bold{\pink{Area_{(Sector)} =\: \dfrac{\theta}{360^{\circ}} \times {\pi}r^2}}}

where,

  • \sf \theta = Central Angle of a Circle
  • \sf \pi = pie or 22/7
  • r = Radius of a Circle

Solution :-

Given :

  • Central Angle of Circle (\sf \theta) = 120°
  • Radius (r) = 21 cm

According to the question by using the formula we get,

\longrightarrow \sf Area_{(Sector)} =\: \dfrac{120^{\circ}}{360^{\circ}} \times \dfrac{22}{7} \times (21)^2

\longrightarrow \sf Area_{(Sector)} =\: \dfrac{120^{\circ}}{360^{\circ}} \times \dfrac{22}{7} \times 21 \times 21

\longrightarrow \sf Area_{(Sector)} =\: \dfrac{120^{\circ}}{360^{\circ}} \times \dfrac{22}{\cancel{7}} \times {\cancel{441}}

\longrightarrow \sf Area_{(Sector)} =\: \dfrac{12\cancel{0^{\circ}}}{36\cancel{0^{\circ}}} \times 1386

\longrightarrow \sf Area_{(Sector)} =\: \dfrac{12}{36} \times 1386

\longrightarrow \sf Area_{(Sector)} =\: \dfrac{\cancel{16632}}{\cancel{36}}

\longrightarrow \sf\bold{\red{Area_{(Sector)} =\: 462\: cm^2}}

{\small{\bold{\underline{\therefore\: The\: area\: of\: sector\: is\: 462\: cm^2\: .}}}}

Answered by CelestialCentrix
57

\ \qquad  { \dag  \cal{Q} \frak{uestion}}

 \sf\: Find  \: the  \: area  \: of \:  sector \:  whose  \: angle \:  is  \: 120° \: and  \: radius \:  is  \: 21cm.

 \:

 \ \qquad   \dag \frak{Solution}

 \sf→Area \:  of \:  sector=  \frac{0}{360}  \times \pi \times  {r}^{2}

\sf→Area \:  of \:  sector= \frac{120}{360}  \times  \frac{22}{7} \times 21 \times 21

\sf→Area \:  of \:  sector= \red{462 {cm}^{2} }

 \:

 \bold \red{Celestial} \bold{Centrix}

Similar questions