Math, asked by sharmadivy99, 1 year ago

find the area of segment AYB if radius is 21 cm and angle AOB = 120​

Answers

Answered by surajtripathi11
3

Answer:

462 cm sqa.

Step-by-step explanation:

the formula of sector r of a circle I

angle upon 360× pie × radius sqa.

after putting the values we ge t 462

Answered by Anonymous
25

SOLUTION:-

Given:

•Radius of the circle is 21cm.

Angle AOB=theta= 120°

Therefore,

Area of sector AOB;

 =  >  \frac{ \theta}{360 \degree} \pi {r}^{2}  \\  \\  =  >  \frac{120 \degree}{360 \degree}  \times  \frac{22}{7}  \times 21 \times 21 \\ \ \\   =  >  \frac{1}{3}  \times 22 \times 3 \times 21 \\  \\  =  >( 22 \times 21) {cm}^{2}  \\  \\  =  > 462 {cm}^{2}

&

Draw OD perpendicular to AB.

In ∆AOB,

OA= OB [radii of the circle]

It's is a isosceles

so, AD= DB

AB= 2AD

angle AOD= angle BOD

 =  \frac{1}{2}  \times 120 \degree \\  \\   =  \frac{120 \degree}{2}  = 60 \degree

In ∆OAD,

sin60 \degree =  \frac{AD}{OA}  \\  \\    =  >  \frac{ \sqrt{3} }{2}  =  \frac{AD}{21cm}  \\  [cross \: multiplication] \\  =  > 2AD = 21 \sqrt{3}  \\  \\  =  > AD =  \frac{21 \sqrt{3} }{2}cm

&

cos60 \degree =  \frac{</strong><strong>OD</strong><strong>}{</strong><strong>OA</strong><strong>}  \\  \\  =  &gt;  \frac{1}{2}  =  \frac{</strong><strong>OD</strong><strong>}{21}  \\  \\   =  &gt; 2</strong><strong>O</strong><strong>D</strong><strong>  = 21 \\  \\  =  &gt; </strong><strong>OD</strong><strong> =  \frac{21}{2} cm

We have, AB= 2AD

 =  &gt; 2 \times  \frac{21 \sqrt{3} }{2}  \\  \\  =  &gt; 21 \sqrt{3} cm

Now,

Area of triangle OAB:

 =  &gt;  \frac{1}{2}   \times AB \times OD \\  \\  =  &gt;  \frac{1}{2}  \times 21 \sqrt{3} cm \times  \frac{21}{2} cm \\  \\  =  &gt;  \frac{441 \sqrt{3} }{4}  {cm}^{2}

Area of segment AYB:

Area of sector AOB - Area of ∆AOB

 =  &gt;  462 {cm}^{2}  - \frac{441 \sqrt{3} }{4}  {cm}^{2}  \\  \\  =  &gt;  \frac{1848   - 441 \sqrt{3} }{4}  \\  \\   =  &gt;  \frac{1848 - 441  \times 1.732}{4}  \\  \\  =  &gt;  \frac{1848 - 76 3.812}{4}  \\  \\  =  &gt;  \frac{1084.18}{4}  {cm}^{2}  \\  \\  =  &gt; 271.05 {cm}^{2}

Thank you.

Similar questions