Math, asked by sonytirthani, 9 months ago

find the area of segment if minor segment with radius 6cm chord subtends an angle of 60degree​

Answers

Answered by SarcasticL0ve
5

24.01cm²

Given:-

  • Radius of circle = 6cm

  • Angle subtended by minor segment is of 60°

To find:-

  • Area of minor segment

Solution:-

\sf Area_{(minor\;segment)} = Area_{(major\; segment)} - Area_{(Triangle)}

\sf Area_{(minor\;segment)} = \pi r^2 \dfrac{ \theta}{ 360^\circ} - \dfrac{1}{2} r^2 \sin{ \theta}

:\implies\sf \dfrac{22}{7} \times 6 \times 6 \times \dfrac{60^\circ}{ 360^\circ} - \dfrac{1}{2} \times 6 \times 6 \times \sin{60}

:\implies\sf \dfrac{132}{7} - 9 \sqrt{3}

Put value of  \sqrt{3} = 1.73

:\implies\sf \dfrac{132}{7} - 9 \times 1.73

:\implies\sf {\underline{24.01\;cm^2}}

\rule{200}3

Answered by TheVenomGirl
5

Answer:-

{ \underline {\sf{ \: Area  \: of  \: minor  \: segment }}}=   \\ \\  \longmapsto \sf \:  \frac{πr^2θ}{360} - \frac{1}{2}  r^2 sinθ \\  \\  \sf \longmapsto\frac{22}{7}   \frac{6 \times 6 \times 60}{360}  -  \frac{1}{2}   \times 12  \sin60^{\circ}

  \\ \\  \sf \longmapsto\frac{22}{7}   \frac{6 \times 6 \times 60}{360}  -  \frac{1}{2}   \times 12  \sin60^{\circ}

 \sf \longmapsto \dfrac{132}{7}  -9  \sqrt{3}

{ \red{ \sf \: Putting  \: the  \: value \:  of  \sqrt{3} =1.73}}

 \longmapsto \sf24.01 {cm}^{2}

Similar questions