Math, asked by mallikanagraj3, 9 months ago

find the area of shaded region​

Attachments:

Answers

Answered by sanketj
0

In the given figure, the hypotenuse of the right triangle is the diameter of the circle since diameter subtends a right angle on the circumference.

so,

we know that

(hypotenuse)² = (base)² + (perpendicular)²

d² = 7² + 7²

d² = 49 + 49

d² = 2x49

d = √(2x49)

d = √(2 x 7²)

d = 7√2 cm

r = d/2 = (7√2)/2

now, area of the shaded region

= ar(semicircle) - ar(triangle)

 =  \frac{1}{2} \pi \:  {r}^{2}  -  \frac{1}{2}  \times b \times h \\  =  \frac{1}{2}  \times  \frac{22}{7} \times  {( \frac{7 \sqrt{2} }{2} )}^{2}   -  (\frac{1}{2}  \times 7 \times 7 )\\  =  \frac{1}{2}  \times  \frac{22}{7}  \times  \frac{98}{4}  - ( \frac{49}{2} ) \\  =  \frac{1}{1}  \times  \frac{11}{7}  \times  \frac{49}{2}  -  \frac{49}{2}  \\  =  \frac{49}{2}  \times  \frac{11}{7}  -  \frac{49}{2}  \\  =  \frac{49}{2} ( \frac{11}{7}  - 1) =  \frac{49}{2} ( \frac{11 - 7}{7} ) \\  =  \frac{49}{2}  \times  \frac{4}{7}  =  \frac{7}{1}  \times  \frac{2}{1} \\  = 14 \:  {cm}^{2}

Hence, area of the shaded region is 14 cm²

Similar questions