Math, asked by bhavyajoshi0806, 6 months ago

find the area of shaded region​

Attachments:

Answers

Answered by ItzRadhika
22

\bf\underline{\underline{\green{SOLUTION:-}}}

Given

  • AD= 12cm
  • BD= 16cm
  • AC = 52cm
  • BC = 48cm

To Calculate

  • Area of shaded region __?

Step by Step Explanation

In Tri. ABD

Where

AD = 12cm ( Given)

BD = 16cm ( Given)

AB = ?

By Pythagoras theorem

( hypotenuse) ² = ( Base ) ²+ ( Perpendicular) ²

➥ hypotenuse ² = 12²+16²

➥ hypotenuse ² = 144+256

➥ hypotenuse ²= 400

➥ hypotenuse = 20cm

Area of triangle ABD = 1/2×b×h

➥ 1/2 ×12×16

➥ 96cm²

Area of triangle ABC

Where

Sides are = 52cm,48cm,20cm

Semi Perimeter = (a+b+c)/2

( 52+20+48)/2

➥ 120/2

➥ 60cm

By Heron's formula

Area  \: of  \: triangle =  \sqrt{s(s - a)(s - b)(s - c)}

Putting values,

 =  \sqrt{60(60 - 52)(60 - 20)(60 - 48)}

  = \sqrt{60 \times 8 \times 40 \times 12}

 =  \sqrt{30 \times 2 \times 4 \times 2 \times 2 \times 20 \times 4 \times 3}

 = 2 \times 4 \sqrt{30 \times 2 \times 10 \times 2 \times 3}

 =  2 \times 4 \times 2 \sqrt{30 \times 10 \times 3}

 =  4 \times 2 \times 2 \sqrt{10 \times 3 \times 10 \times 3}

 = 4 \times 2 \times 2 \times 10 \times 3

 = 480cm ^{2}

Area of triangle ABC = 4800cm²

Area of Shaded region = Area of triangle ABC - Area of triangle ABD

➥ 480-96

➥ 384cm²

\bf\underline{\underline{\green{SOLUTION:-}}}

  • Area of Shaded region = 384cm²

_____________________________________________

Similar questions