Math, asked by aryan021212, 1 day ago

Find the area of shaded region​

Attachments:

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given that,

OQSR is a rectangle such that, RT = 1 cm and OQ = 3 cm

Now,

Let assume that radius of semi-circle, OT = r cm

So, OS = r cm

Now, OR = OT - RT = r - 1 cm

Now, In right-angle triangle ORS

We have,

OR = r - 1 cm

OS = r cm

RS = OQ = 3 cm

By using Pythagoras Theorem, we have

\rm \:  {OS}^{2} =  {OR}^{2} +  {RS}^{2}  \\

So, on substituting the values, we get

\rm \:  {r}^{2} =  {(r - 1)}^{2} +  {3}^{2}  \\

\rm \:  {r}^{2} =  {r}^{2} + 1 - 2r + 9  \\

\rm \:  0 =  - 2r + 10 \\

\rm \:  2r  \:  =  \:  10 \\

\rm\implies \:r \:  =  \: 5 \: cm \:  \\

Now,

Dimensions of rectangle OQSR

OQ = 3 cm

OR = OT - RT = 5 - 1 = 4 cm

\rm \: Area_{(rectangle)}\: OQSR \:  =  \: 3 \times 4 = 12 \:  {cm}^{2}  \\

Now,

\rm \: Area_{(quadrant)}\:OTSP =  \frac{1}{4} \:  {\pi \: r}^{2} \\

\rm \: =  \: \frac{1}{4}  \times \pi \times  {5}^{2}   \\

\rm \: =  \: \frac{25\pi}{4} \\

\rm \: =  \: 6.25 \: \pi \:  {cm}^{2}  \\

\rm\implies \: Area_{(quadrant)}\:OTSP \:  =  \: 6.25 \: \pi \:  {cm}^{2}  \:  \\

So,

Required area of shaded region is

\rm \: =  \:  Area_{(quadrant)}\:OTSP \:  -  \: Area_{(rectangle)}\: OQSR \\

\rm \: =  \: (6.25 \: \pi \:  -  \: 12) \:  {cm}^{2}  \\

Hence, Option (ii) is correct.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\begin{gathered}\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Base\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}d\sqrt {4a^2-d^2}\\ \\ \star\sf Parallelogram =Base\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}\end{gathered}

Answered by maheshtalpada412
2

Answer:

\color{red} \[ \begin{array}{l} \text{Given that,} \\ \tt  R T=1 cm \\  \tt O Q=3 cm \end{array} \]

 \color{navy}\[ \begin{array}{l} \text{Here,} \\  \text { let } \tt O R=x \\  \tt \: O S=O R+R T( \because \text { radius }) \\ \tt \Rightarrow r=O R+1=x+1 \qquad \ldots \text { \tt (1) } \end{array} \]

\color{darkviolet} \begin{aligned} &  \tt \: r^{2}=3^{2}+O R^{2}(\text { pythagoras theorem }) \\ \\   \Rightarrow & \tt(x+1)^{2}=9+x^{2} \\  \\   \tt\Rightarrow &  \tt \: x^{2}+1+2 x=9+x^{2} \\ \\  \Rightarrow & \tt 2 x=8 \\ \\  \Rightarrow & \tt x=4 \end{aligned}

\color{green} \text{Hence, area of \( \tt O Q S R=3 \times 4=12 \)}  \\ \text{ radius \(  \tt=O R+R T=x+1=4+1=5 \)}

\color{brown} \text{Area of shaded region }=  \dfrac{\tt(Area\:\: of \:\:circle) }{4}- (\tt Area\:\: of \:\: OQ S R )

\color{olive}\[ \begin{array}{l}  \tt=\dfrac{\pi \times 5 \times 5}{4}-12 \qquad\left(\because A=\pi r^{2}\right) \\  \\ = \tt\dfrac{25 \pi}{4}-12 \\ \\ \boxed{\boxed{ \tt =6.25 \pi-12}} \end{array} \]

Similar questions