Math, asked by Hrithikesh052008, 2 months ago

Find the area of shaded region in figure.
(1 Point)

Attachments:

Answers

Answered by MissSolitary
1

—› Your Answer :-

In the fig. given there are two triangles ∆ ABC and ∆ BDC,

where,

∆ BDC is a right angle triangle and ∆ ABC is equivalent triangle,

Now,

 \sf \: Area  \: of  \: equilateral  \: ∆  \: ABC =  \frac{ \sqrt{3} }{4} ( {side)}^{2}  \\  \\  =  \sf \frac {  \sqrt{3} }{4} ( {10)}^{2}  \\  \\   \sf \: =  \frac{ \sqrt{3} }{4}  \times 100 \\  \\   \sf \: =  \frac{ \sqrt{3} }{ \cancel4}  \times  \cancel{100}  \: ^{25}  \\  \\   \sf \: = 25 \sqrt{3} \:   {cm}^{2}

Now,

In ∆ BDC,

h = 10 cm

b = ?

p = 8 cm

By applying Pythagoras theorem,

h² = p² + b²

(10)² = (8)² + b²

b² = (10)² - (8)²

b² = 100 - 64

b² = 36

b = √36

b = 6 cm

so,

DC = 6 cm

\sf \: Area  \: of  \: right  \: angle  \: ∆  \: BDC=  \frac{1}{2}  \times b \times h \\   \\  \sf =  \frac{1}{2}  \times DC \times DB \\  \\   =  \sf \:  \frac{1}{ \cancel{2}} \times \cancel{6} \: ^{3} \times 8  \\  \\  \sf \:  = 24 \:  {cm}^{2}

Now,

To find,

Area of shaded region = Area of ∆ ABC - Area of ∆ BDC

=> 253 - 24

=> 13

=> 1 × 1.732 cm²

=> 1.732 or 1.73 cm² (ans)

Similar questions