. Find the area of shaded region in the figurebelow if PQ = 16 cm, PR = 12 cm and O iscentre of the circle. [Take, it = 314) ]CBSE 2011OR
Answers
EXPLANATION.
To find area of shaded region.
PQ = 16 cm. [Given].
PR = 12 cm. [Given].
O is Centre of the circle.
As we know that,
Formula of Pythagoras Theorem.
⇒ H² = P² + B².
Hypotenuse > Perpendicular > Base.
Using this formula in the equation, we get.
In RPQ.
⇒ (RQ)² = (PQ)² + (RP)².
⇒ (RQ)² = (16)² + (12)².
⇒ (RQ)² = 256 + 144.
⇒ (RQ)² = 400.
⇒ RQ = √400.
⇒ RQ = 20 cm.
RQ = Diameter of circle.
Radius of circle = 10 cm.
Area of shaded region = Area of semicircle - Area of triangle.
⇒ πr²/2 - 1/2 x b x h.
⇒ [3.14 x (10)²]/2 - 1/2 x 12 x 16.
⇒ [3.14 x 100]/2 - 6 x 16.
⇒ 157 - 96 = 61 cm².
Area of shaded region = 61 cm².
Given Data :
PQ = 16cm
PR = 12 cm
‘ O ’ is the centre of the circle
from the figure,
RQ is the Diameter of the circle as well as Hypotenuse of the Triangle
OR = OQ = Radius of the circle
To Find :
Area of The Shaded Region .
Solution :
It is a Right Angled Triangle .
.°. Hypotenuse > Perpendicular > Base .
H² = B² + P²
⇒ H² = (12)² + (16)²
⇒ H² = 400
⇒ H = 20cm
⇒ RQ = 20cm
⇒ Radius = 10cm
Area of the Circle = πr²
⇒ Area = 3.14 × (10)²
⇒ Area = 3.14 × 100
⇒ Area = 314 cm²
then,
Area of Semi circle = 314/2
⇒ Area of semicircle = 157 cm²
Area of Triangle = ½ × b × h
⇒ Area = ½ × 12 × 16
⇒ Area = 96cm²
Now Finding: Area of Shaded Region .
Area of Shaded Region = Area of semicircle - Area of of Triangle
⇒ 157 - 96
⇒ 61 cm²
----------------------------------------------------
Area of Shaded Region = 61cm²