Math, asked by riyagajriap2uv83, 1 year ago

Find the area of shaded region where arcs APD AQB BRC and CSD are semicircles of diameter 14 ,3.5,7,3.5 respectively

Answers

Answered by Geekydude121
67
Area (APD) = pi/2 * 7^2
                    = 77 
Area (AQB) = pi/2 * 1.75^2
                    = 4.81
Area ( BRC) = pi/2 * 49/4
                    = 77/4 = 19.25
Area (CSD) = pi/2 * 1.75^2
                     = 4.81
Thus Area of shaded Region = 77+ 2* 4.81 + 19.25
                                                = 105.87 unit sqr

shabeebkv17p3t8vp: brother,u should subtract 2*4.81
shabeebkv17p3t8vp: jst last step went wrong ...balance great !
Answered by JackelineCasarez
1

77cm^2 is the area of the shaded region.

Step-by-step explanation:

Given that daimeters of semicircles:

ar(APD) = 14cm

ar(BRC) = 3.5 cm

ar(AQB) = 7 cm

ar(CD) = 3.5 cm

To find the area of shaded region;

⇒ ar(APD) + ar(BRC) − ar(AQB) − ar(CD)

⇒ {(3.5 + 3.5)^2/2 + (3.5)^2/2 - (3.5)^2/2} * 2

= 77 cm^2

∵ The area of the shaded region = 77cm^2

Learn more: find the area

brainly.in/question/3996219

Similar questions