Math, asked by konthoujamkanglei, 3 months ago

Find the area of small region bounded by the ellipse x²/a² + y²/b²=1 and the line x/a + y/b =1.​

Answers

Answered by mathdude500
2

\large\underline\blue{\bold{Given \:  Question :-  }}

Find the area of small region bounded by the curves

\sf \:  \dfrac{ {x}^{2} }{ {a}^{2} }  + \dfrac{ {y}^{2} }{ {b}^{2} }  = 1 \: and \: \dfrac{x}{a}  + \dfrac{y}{b}  = 1

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

\tt \:   \longrightarrow \:  \int \:  \sqrt{ {a}^{2}  -  {x}^{2} } dx = \dfrac{x}{2}  \sqrt{ {a}^{2}  -  {x}^{2} } +  \dfrac{ {a}^{2} }{2}  {sin}^{ - 1} \dfrac{x}{a}  + c

\tt \:   \longrightarrow \:  \int \: x \: dx = \dfrac{ {x}^{2} }{2}  + c

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

Point of intersection of curves :-

\tt \:   \longrightarrow \: \dfrac{x}{a}  + \dfrac{y}{b}  = 1

\tt\implies \:\dfrac{y}{b}  = 1  -  \dfrac{x}{a}  -  -  - (1)

\tt \:   \longrightarrow \: \dfrac{ {x}^{2} }{ {a}^{2} }  + \dfrac{ {y}^{2} }{ {b}^{2} }  = 1

☆ On substituting equation (1), we get

\tt \:   \longrightarrow \: \dfrac{ {x}^{2} }{ {a}^{2} }  +  {(1 - \dfrac{x}{a}) }^{2}  = 1

\tt \:   \longrightarrow \: \dfrac{ {x}^{2} }{ {a}^{2} }  + \dfrac{ {x}^{2} }{ {a}^{2} }  + 1  -  \dfrac{2x}{a}  = 1

\tt \:   \longrightarrow \: \dfrac{ {2x}^{2} }{ {a}^{2} } -  \dfrac{2x}{a}  = 0

\tt\implies \:\dfrac{2x}{a} (\dfrac{x}{a}  - 1) = 0

\tt\implies \:x \:  = 0 \: or \: x \:  = a

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf b \\ \\ \sf a & \sf 0 \end{array}} \\ \end{gathered}

\tt \:   \longrightarrow \: Required  \: Area  = \int_0^a(y_{(ellipse)} - y_{(line)}) dx

\tt \:   = \int_0^a(\dfrac{b}{a}   \sqrt{ {a}^{2}  -  {x}^{2}  }- \dfrac{b}{a} (a - x)) dx

\tt \:   =\dfrac{b}{a}  [\dfrac{x}{2} \sqrt{ {a}^{2}  -  {x}^{2}     } + \dfrac{ {a}^{2} }{2} {sin}^{ - 1}\dfrac{x}{a} - ax + \dfrac{ {x}^{2} }{2}  ]_0^a

\tt \:   =\dfrac{b}{a}\bigg(0 +\dfrac{ {a}^{2} }{2}  {sin}^{ - 1} 1 -  {a}^{2}   + \dfrac{ {a}^{2} }{2}  \bigg)

\tt \:   =\dfrac{b}{a}\bigg( \dfrac{ {a}^{2} }{2}  \times \dfrac{\pi}{2} - \dfrac{ {a}^{2} }{2}  \bigg)

\tt \:   =\dfrac{b}{a} \times \dfrac{ {a}^{2} }{2} \bigg(\dfrac{\pi}{2} - 1  \bigg)

\tt  \:  = \dfrac{ab}{2} \bigg( \dfrac{\pi}{2} - 1 \bigg) \: sq. \: units

─━─━─━─━─━─━─━─━─━─━─━─━─

Attachments:
Similar questions