Math, asked by saisma2025, 4 months ago

Find the area of square whose side is 9ab ²-7b²​

Answers

Answered by Anonymous
24

Given :-  

  • Side of square is 9ab²  - 7b²  

To Find :-  

  • Area of the square  

Solution :-  

~ Here , the concept of Area of Square can be used. As we can see that , we are given side of the square. Then , we can easily find the area by applying the formula of finding area of a square . And we’re given a variable as a value of side , we can use suitable identities to simplify .  

 As we know that ,

  • Area of a square = ( Side )²  

By putting the values

= ( 9ab² – 7b² )²

Identity used ::  

( a – b )² = a² + b² + 2ab  

______________________  

= ( 9ab² )² + ( 7b² )² + ( 2 × 9ab² × 7b² )  

= 81a²b⁴−126ab⁴+49b⁴

______________________

Therefore ,  

Area of the square is  81a²b⁴− 126ab⁴+49b⁴

Answered by Anonymous
10

AnswEr-:

  • \red{\mathrm {\underline {\star{  The\:area\:of\:Square \:is \:81a^{2}b^{4} + 49b^{4} - 126ab^{4}\:sq.units}}}}\\

Explanation-:

\mathrm {\bf{ Given-:}}\\

  • The Side of Square is 9ab ²-7b² units .

\mathrm {\bf{ To\:Find-:}}\\

  • The area of Square.

\mathrm {\bf{\dag{ Solution \;of\:Question-:}}}\\

  • \underbrace {\mathrm {\bf{ Understanding \:the\:Concept \:-:}}}\\

  • We have to find the area of Square whose Side is given .

  • By Putting the given Values [ Side ] in the Formula for Area of Square.

  • By Doing this We can get the area of Square.

______________________________________________

\underline{\mathrm {\bf{\dag{ Finding \:Area\;of\:Square-:}}}}\\

As, We know that ,

  • \underline{\boxed{\star{\sf{\red{Area_{(Square)}  \: = \: side \times side\:sq.units }}}}}

\mathrm {\bf{ Here-:}}\\

  • The Side of Square is 9ab ²-7b² units .

Now , By Putting known Values in Formula for Area of Square-:

  • \longmapsto {\mathrm { Area \:-: 9ab^{2} -7b^{2} \times 9ab^{2} -7b²^{2} }}\\

  • \longmapsto {\mathrm { Area \:-: (9ab^{2} -7b^{2})^{2}  }}\\

As , We know that Algebraic identities-:

  • \mathrm {\underline {\star{ (a -b)^{2} = a^{2} + b^{2} - 2 ab}}}\\

By using this -:

  • \longmapsto {\mathrm { Area \:-: (9ab^{2})^{2} + (7b^{2})^{2} - 2 \times 9ab^ {2} \times 7b^{2}  }}\\

  • \longmapsto {\mathrm { Area \:-: 81a^{2}b^{4} + 49b^{4} - 18ab^ {2} \times 7b^{2}  }}\\

  • \qquad \quad \qquad \pink{\underline{\boxed {\frak { Area \:-: 81a^{2}b^{4} + 49b^{4} - 126ab^{4}\:sq.units  }}}}\\

Hence ,

  • \red{\mathrm {\underline {\star{  The\:area\:of\:Square \:is \:81a^{2}b^{4} + 49b^{4} - 126ab^{4}\:sq.units}}}}\\

_______________________________________________________

Similar questions