Math, asked by 9821407585jain, 9 months ago

find the area of the above figure​

Attachments:

Answers

Answered by saurabhshekade
2

Answer:

75 {cm}^{2}

Step-by-step explanation:

area \: of \: triangle =  \frac{1}{2} \: base \:  \times height \\  = \:  \:  \:  \:  \:  \:  =  \frac{1}{2}   \times 14 \times 15 \\  \:  \:  \:  \:  \:  \:   = 7 \times 15 \\  \:  \:  \:  \:  \:  \:  = 105cm ^{2}  \\  area \: of \: unshaded \: region =  \frac{1}{2}  \times 12 \times 5 \\  \:  \:  \:  \:  \:  \:  = 6 \times 5 \\  \:  \:  \:  \:  \:  \:  \: = 30 {cm}^{2}  \\  \:  \:  \:  \:  \:  \: area \: of \: shaded \: region = area \: of \: triangle - area \: of \: unshaded \: region \\  \:  \:  \:  \:  \:  = 105 - 30 \\  \:  \:  \:  \:  \:  = 75 {cm}^{2}

Answered by Rythm14
41

Area of shaded region = Area of ∆ABC - Area of ∆ABD

_____________________________

∆ABD is a right triangle, hence the area is

 \frac{1}{2}  \times b \:  \times h

b = 5cm

h = 12cm

---> Area = 1/2 x 5 x 12

---> Area = 5 x 6

---> Area = 30cm^2

___________________________

Also, In ∆ABC,

AB^2 = AD^2 + DB^2

AB^2 = 12^2 + 5^2

AB^2 = 144 + 25

AB^2 = 169

AB = √169

AB = 13cm

___________________________

area \: of \: \triangle \: abc \:  =  \sqrt{s(s - a)(s - b)(s - c)}

Here,

s = a + b + c/2

= 13 + 14 + 15/2

= 42/2

= 21

•a = 13

•b = 14

•c = 15

substituting the values in the formula,

area \:  =  \sqrt{21(21 - 13)(21 - 14)(21 - 15)}  \\  =  >  \sqrt{21(8)(7)(6)}  \\  =  >  \sqrt{7056}  \\  =  > 84{cm}^{2}

__________________________

Area of shaded region = 84 - 30

= 54cm^2

Similar questions