Math, asked by jiyaraghuwanshi439, 6 months ago

Find the area of the circle whose daimeter is :(Take π = 22/7)
1. 14 CM
2. 56 CM
3. 63 CM
4. 84 CM

Answers

Answered by shashi1979bala
3

\huge\fbox\blue{GOOD~EVENING}

\huge\fbox\pink{Hope~it~helps}

\huge\fbox\blue{Refer~to~attachments}

Attachments:
Answered by CɛƖɛxtríα
53

The areas of the four circles are 154 cm², 2464 cm², 3118.5 cm² and 5544 cm² respectively.

Step-by-step explanation:

{\underline{\underline{\bf{Given:}}}}

  • Diameter of circle₁ = 14 cm
  • Diameter of circle₂ = 56 cm
  • Diameter of circle₃ = 63 cm
  • Diameter of circle₄ = 84 cm
  • \pi = \sf{\frac{22}{7}}

{\underline{\underline{\bf{To\: find:}}}}

  • The area of the four circles.

{\underline{\underline{\bf{Formula\:to\:be\: used:}}}}

\underline{\boxed{\sf{{Area}_{[Circle]}=\pi r^2\:sq.units}}}

{\underline{\underline{\bf{Solution:}}}}

We can find the areas of the circles by inserting the measure of radius in the formula:

\leadsto{\sf{\purple{\pi r^2\:sq.units}}}

But we are only given with the measures of diameter. So, first let's find the radius of the circles.

‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎\sf{ |  | \:  \dfrac{Diameter}{2} =Radius \:   | | }

\begin{gathered}\boxed{\begin{array}{c|c}\sf Circle\:_{(1)}&\sf  \dfrac{14}{2} =  &\bf 7 \: cm \\ \\ \sf \: Circle\:_{(2)}& \sf  \dfrac{56}{2}  \:  = & \bf 28 \: cm \\ \\ \sf  \: Circle\:_{(3)}&\sf\dfrac{63}{2} =  & \bf 31.5 \: cm\\ \\ \sf \: Circle\:_{(4)}& \sf  \dfrac{84}{2}  \:  = & \bf 42 \: cm\end{array}}\end{gathered}

Now, let's find the areas!

{\underline{\bf{Circle\:_{(1)}:}}}

Radius = 7 cm

\:

\:\:\:\:\:\:\:\::\implies{\sf{\dfrac{22}{7}\times  7^2}}

\:

\:\:\:\:\:\:\:\:\:\:\:\::\implies{\sf{\dfrac{22}{\cancel{7}}\times \cancel{7}\times 7}}

\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\::\implies{\sf{22\times 7}}

\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\::\implies{\underline{\underline{\frak{\red{154\:cm^2}}}}}

\:

{\underline{\bf{Circle\:_{(2)}:}}}

Radius = 28 cm

\:

\:\:\:\:\:\:\:\::\implies{\sf{\dfrac{22}{7}\times  28^2}}

\:

\:\:\:\:\:\:\:\:\:\:\:\::\implies{\sf{\dfrac{22}{\cancel{7}}\times \cancel{28}\times 28}}

\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\::\implies{\sf{22\times 4\times 28}}

\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\::\implies{\underline{\underline{\frak{\red{2464\:cm^2}}}}}

\:

{\underline{\bf{Circle\:_{(3)}:}}}

Radius = 31.5 cm

\:

\:\:\:\:\:\:\:\::\implies{\sf{\dfrac{22}{7}\times  (31.5)^2}}

\:

\:\:\:\:\:\:\:\:\:\:\:\::\implies{\sf{\dfrac{22}{\cancel{7}}\times \cancel{31.5}\times 31.5}}

\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\::\implies{\sf{22\times 4.5\times 31.5}}

\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\::\implies{\underline{\underline{\frak{\red{3118.5\:cm^2}}}}}

\:

{\underline{\bf{Circle\:_{(4)}:}}}

Radius = 42 cm

\:

\:\:\:\:\:\:\:\::\implies{\sf{\dfrac{22}{7}\times  42^2}}

\:

\:\:\:\:\:\:\:\:\:\:\:\::\implies{\sf{\dfrac{22}{\cancel{7}}\times \cancel{42}\times 42}}

\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\::\implies{\sf{22\times 6\times 42}}

\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\::\implies{\underline{\underline{\frak{\red{5544\:cm^2}}}}}

__________________________________________

Similar questions