Math, asked by nithyanandamthiru197, 16 days ago

Find the area of the circle whose diameter is 42 cm​

Answers

Answered by srustiillur
0

Answer:

5544cm²

Step-by-step explanation:

diameter = 42 cm

radius = diameter /2

= 42/2

radius = 21 cm.

we know that ,

area of circle = 4πr²

= 4×22/7×(21)²

=4×22/7×21×21

=4×22×21×3

=5544cm².

The area of the circle of diameter 42cm

= 5544cm²

Answered by Anonymous
21

\star \; {\underline{\boxed{\red{ \pmb{\pmb{\frak{ \; Given\; \; :- }}}}}}}

  • Diameter = 42cm

\begin{gathered}\begin{gathered}\begin{gathered} \\\qquad{\rule{200pt}{2pt}}\end{gathered}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered} \\ \\\end{gathered}\star \;{\underline{\boxed{\pink{\pmb{\frak{ \; To \; Find\; :- }}}}}}\end{gathered}

  • Area Of The Circle = ?

\begin{gathered}\begin{gathered} \\ \\\end{gathered}\begin{gathered}\begin{gathered} \\\qquad{\rule{200pt}{2pt}} \end{gathered}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered} \\ \\\end{gathered}\star \;{\underline{\boxed{\green{\pmb{\frak{ \;Solution\; :- }}}}}}⋆\end{gathered}\end{gathered}

\maltese  Formula Used :

  • {\underline{\boxed{ \pmb{ \pmb{ \pmb{\pmb{\sf{Area_{(Circle)}=4\pi \:   r^2}}}}}}}}

\begin{gathered}\begin{gathered} \\ \\\end{gathered}\begin{gathered}\begin{gathered} \\\qquad{\rule{200pt}{2pt}} \end{gathered}\end{gathered}\end{gathered}

Where :

  • R = Radius

\begin{gathered}\begin{gathered} \\ \\ \end{gathered}\end{gathered}

  Calculating The Area :

\begin{gathered}\begin{gathered} \\ \\\end{gathered}\end{gathered}\begin{gathered} \qquad \;\dashrightarrow \; \;\sf{Area_{(Circle)}=4  \pi r^2}\end{gathered}

\begin{gathered}\begin{gathered} \\ \\\end{gathered}\end{gathered}\begin{gathered} \qquad \; \dashrightarrow \; \;\sf{Area_{(Circle)}=4  \times  \:    \dfrac{22}{7} \: \times r^2}\end{gathered}

\begin{gathered}\begin{gathered} \\ \\\end{gathered}\end{gathered}\begin{gathered} \qquad \; \dashrightarrow \; \; \sf {Area_{(Circle)}=4  \times \:\dfrac{22}{7} \:\times\dfrac{Diameter {}^{2} }{2} }\end{gathered}

\begin{gathered}\begin{gathered} \\ \\ \end{gathered}\end{gathered}\begin{gathered} \qquad \; \dashrightarrow \; \; \sf {Area_{(Circle)}=4  \times  \:    \dfrac{22}{7} \: \times   \dfrac{42 {}^{2} }{2} }\end{gathered}

\begin{gathered} \qquad \; \dashrightarrow \; \; \sf {Area_{(Circle)}=4  \times  \:    \dfrac{22}{7} \: \times    \cancel\dfrac{42 {}^{2} }{2} }\end{gathered}

\begin{gathered} \qquad \; \dashrightarrow \; \; \sf {Area_{(Circle)}=4  \times  \:    \dfrac{22}{7} \: \times    21 {}^{2}  }\end{gathered}

\begin{gathered} \qquad \; \dashrightarrow \; \; \sf {Area_{(Circle)}=4  \times  \:    \dfrac{22}{7} \: \times    21  \times 21 }\end{gathered}

\begin{gathered} \qquad \; \dashrightarrow \; \; \sf {Area_{(Circle)}=4  \times  \:    \dfrac{22}{7} \: \times    441 }\end{gathered}

\begin{gathered}\qquad \; \dashrightarrow\; \; \sf {Area_{(Circle)}=4\times  \:  \dfrac{22}{ \cancel7} \:\times\cancel{441}}\end{gathered}

\begin{gathered} \qquad \; \dashrightarrow \; \; \sf {Area_{(Circle)}=4\times  \:  22\:\times63}\end{gathered}

\begin{gathered}\qquad \; \dashrightarrow \; \; \sf {Area_{(Circle)}=4  \times  \:    1386}\end{gathered}

\begin{gathered}\qquad \; \dashrightarrow\; \; \sf {Area_{(Circle)}=4\times  \:    1386}\end{gathered}

\qquad \;{\dashrightarrow\; \;{\underline{\boxed{ \pmb{ \pmb{\pmb{\sf{Area_{(Circle)} =  {5584cm}^{2}  }}}}} \;{\red{\pmb{\bigstar}}}}}}

\begin{gathered}\begin{gathered}\begin{gathered} \\\qquad{\rule{200pt}{2pt}}\end{gathered}\end{gathered}\end{gathered}\begin{gathered} \\ \\ \end{gathered}

 \\ \\

\therefore The Area of Circle is 5584cm² .

 \\

 \qquad{\rule{200pt}{2pt}}

Similar questions