Math, asked by shanmugapriya61981, 3 months ago

find the area of the each of the following polygons

Attachments:

Answers

Answered by tajinderkaur78
0

Answer:

Hey mate here is your answer

Step-by-step explanation:

22m + 9m + 9m + 6m + 12m + 4m = 62 m is the area.

please mark me as Brainliest

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Construction :-

  • Produce AG to H intersecting DE at H.

  • Through B, draw BI perpendicular to DE intersects DE at H.

Calculations

Now,

Dimensions of sides :-

  • DE = 22 m

  • EH = FG = 9 m

  • BI = AH = AG + GH = 9 + 6 = 15 m

  • AB = HI = 12 m

  • DI = DE - EH - HI = 21 - 12 - 9 = 1 m

Now,

Area of figure EFGH

EFGH is a square with sides

  • EF = FG = GH = HE = 9 m

\rm :\longmapsto\:Area_{(square)} =  {(side)}^{2}

\rm :\longmapsto\:Area_{(square)} =  {(9)}^{2}

\bf :\longmapsto\:Area_{(square)} =  81 \:  {m}^{2}

Area of figure ABIH

ABIH is a rectangle with sides,

  • Breadth, AB = 12 m

  • Length, BI = 15 m

\rm :\longmapsto\:Area_{(rectangle)} = length \times breadth

\rm :\longmapsto\:Area_{(rectangle)} = 15 \times 12

\bf :\longmapsto\:Area_{(rectangle)} = 180 \:  {m}^{2}

Area of figure DIBC

DIBC is a trapezium with DC || BI and

  • DC = 4 m

  • BI = 15 m

  • DI = 1 m

\rm :\longmapsto\:Area_{(trapezium)} = \dfrac{1}{2}(sum \: of \parallel \: sides) \times distance

\rm :\longmapsto\:Area_{(trapezium)} = \dfrac{1}{2}(4 + 15) \times1

\rm :\longmapsto\:Area_{(trapezium)} = \dfrac{1}{2}(19)

\bf :\longmapsto\:Area_{(trapezium)} = 9.5 \:  {m}^{2}

Thus,

\bf :\longmapsto\:Area_{(polygon)}

 \:  \:   \rm \:  =  \:   \:Area_{(square)} + Area_{(rectangle)} + Area_{(trapezium)}

 \:  \:   \rm \:  =  \:   \:81 + 180 + 9.5

 \:  \:   \rm \:  =  \:   \:270.5 \:  {m}^{2}

\bf :\implies\:Area_{(polygon)} = 270.5 \:  {m}^{2}

Additional Information :-

\rm :\longmapsto\:Perimeter_{(rectangle)} = 2(l + b)

\rm :\longmapsto\:Perimeter_{(square)} = 4 \times side

\rm :\longmapsto\:Perimeter_{(rhombus)} = 4 \times side

\rm :\longmapsto\:Perimeter_{(circle)} = 2\pi \: r

\rm :\longmapsto\:Area_{(circle)} = \pi \:  {r}^{2}

Attachments:
Similar questions