find the area of the figure below using heron's formula, giving the answer to three decimal places.
Answers
Answer:
252 cm²(approx)
Step-by-step explanation:
Let the quadrilateral be ABCD.
In the figure, ΔABD is a right-angled triangle.
By Pythagoras Property,
Hypotenuse²=Base²+Altitude²
Altitude²=Hypotenuse²-Base²
AB²=AD²-BD²
AB²=(20)²-(16)² [a²-b²=(a+b)(a-b)]
AB²=(20+16)(20-16)
AB=√36×4
AB=√144
AB=12 cm
Then, Area of ΔABD= 1/2×12×16
Area of ΔABD= 1/2×192
Area of ΔABD= 96 cm²
In ΔBCD,(By Heron's Formula)
s=20+23+16/2
s=59/2=29.5 cm
A=√s(s-a)(s-b)(s-c)
=√29.5×6.5×9.5×13.5
=1/100√295×65×95×135
=1/100√5×59×5×13×5×19×5×9×3
=1/100×5×5×3√59×13×19×3
=1/100×75×208.065024
=1/4×3×208.065024
=3×52.016256
=156.048.........cm²
Total area of the quadilateral=96 cm+156.048.......cm²
Total area of the quadilateral=252cm²(approx)
This is the answer to your question.
Please mark this as the BRAINLIEST ANSWER.............................