Math, asked by QueenOfStudy, 3 months ago

Find the area of the following figure.​

Attachments:

Answers

Answered by jahnavijanu1018
0

Answer:

18×15×30:8100m

Step-by-step explanation:

hope this is helpful to you

Answered by AadityaSingh01
3

Construction:-

Draw a line segment parallel to PS and intersect line segment SR at O.

Solution:-

From construction PQOS will be a Rectangle and QRO will be a Triangle right-angled at O.

So, OR = SR - SO

            = 30 m - 18 m

            = 12 m

By Pythagoras theorem

OQ² = QR² - OR²

OQ² = 15² - 12²

OQ² = 225 - 144

OQ² = 81

OQ = √81

OQ = 9 m

So, OQ = PS = 9 m                [ PQOS is a Rectangle ]

now, Area of ΔQRO = \frac{1}{2} × QO × OR

                                 = \frac{1}{2} × 9 m × 12 m

                                 = 54 m²

and, Area of Rectangle PQOS = L × B

                                                  = 18 m × 12 m

                                                  = 216 m²

∴ Area of the given figure = Area of ΔQRO + Area of Rectangle PQOS

                                           = 54 m² + 216 m²

                                           = 270 m²

Area of the given figure = 270 m²

Some Important Formula:-

  • Area of Triangle = \frac{1}{2} × Base × Height

  • Area of Rectangle = Length × Breadth

  • Area of Square = Side²

  • Area of Rhombus = \frac{1}{2} × d₁ × d₂

  • Area of Parallelogram = Base × Height

  • Area of Trapezium = \frac{1}{2} × (Sum of Parallel side) × height

  • Perimeter of Square = 4 × side

  • Perimeter of Rectangle = 2 ( Length + Breadth )

  • Perimeter of Rhombus = 4 × Side

  • Perimeter of Parallelogram = 3 ( Length + Breadth )

  • Perimeter of Triangle = Sum of All sides

  • Area of Equilateral Triangle = \frac{\sqrt{3}}{4} × Side²


QueenOfStudy: Well done
AadityaSingh01: Thanks
Similar questions