Math, asked by manoramaprusty85, 7 months ago

Find the area of The following polygons.
E
2 cm
4cm
5 cm
H
C
cm
F
6.5cm G
4cm
2 cm
B
A​

Attachments:

Answers

Answered by bnaren123
3

Step-by-step explanation:

Area of regular pentagon A B C DE of side 5 cm and AD = B D =4 cm .

 → The sides AD and BD will convert polygon AB C D E in three triangles namely ΔADE, ΔADB, and ΔDCB.

→ΔADE≅ΔDCB          ⇒ [SAS, AE=DE=BC=DC= 5 cm, AD=DB=4 cm]

→Draw EM ⊥ AD, and D N ⊥ AB

In an isosceles triangle perpendicular from opposite vertex divides the side on which perpendicular is falling into two equal parts.

Using pythagoras theorem In Δ EMD,

ED = 5 cm, EM =?, DM = 2 cm

EM² = ED² - DM²

      = 5² - 2²

      = 25 - 4

        =21

EM =√ 21

Area of a triangle =  × Base × Height

Area (Δ ADE) =

→Similarly , In ΔADB , length of perpendicular DN is given by the method used above ==

Area ( ΔDAB)=  cm²

Area of pentagon A B CD E = Ar(ΔADE) + Ar(DAB) + Ar(ΔDBC)

                                             =2× 2√21 +  ⇒Ar(ΔADE) =Ar(ΔDBC)

                                              = 4 × 4.5 + 2.5 × 6.24

                                              = 18 + 15.60

                                              = 33.60 cm²

2. Regular hexagon of side 6 cm.

Consider a regular hexagon P Q R S T U in which PQ=QR=RS=ST=TU=UP= 6 cm.

Join Q and U , then T and R.

Sum of all angles of Regular hexagon = 180° × (6-2)

                                                     = 180° × 4

                                                     = 720°

All interior angles of regular hexagon =  720° ÷ 6

                                                              = 120°

As, PU = QP=6 cm

→∠PUQ = ∠PQU [ if sides are equal then angle opposite to them are equal]

→ ∠P + ∠PUQ + ∠PQU = 180° → [Angle sum property of triangle]

→ 120° + 2∠PUQ = 180°

→ 2∠PUQ = 180°- 120°

→ ∠PUQ = 60° ÷ 2 = 30°

Draw , PH ⊥ UQ and SJ⊥TR.→[ Perpendicular from opposite vertex in an isosceles triangle divides the side on which perpendicular is falling in two equal parts.]

Cos 30° =

→ UH = 3 √3 cm , So U Q = 2 × UH =2 ×3 √3 cm= 6√3 cm

Sin 30° =

As, sin 30° =

PH = 3 cm

→Area (ΔPUQ) =  cm²

Area(ΔPUQ) = Area(ΔTRS)= 18 √3 cm² ∵ [ΔPUQ and Δ TRS are congruent by SAS, PU=TS, PQ=SR, and UQ= TR]

Now consider rectangle URTQ

→Area (Rectangle UQRT) = UQ × QR  → [Length × Breadth=Area of Rectangle]

= 6 √3 × 6

= 36 √3 cm²

→Area Hexagon (P Q R STU)  

= Area(ΔPQU) + Area rectangle (UQRT) + Area(ΔTRS)

= 18 √3 + 36 √3 +18 √3

                 =  72 √3 cm²

Similar questions