Math, asked by tusharbansal2003, 6 months ago

Find the area of ​​the function f (x) = √x-2.​

Answers

Answered by Sanskarbro2211
0

We are given that  f(x)=\sqrt{x} -2 .

f(x)=y

y=\sqrt{x} -2

Now let us evaluate  f(0) .

y=\sqrt{0} -2\\y=-2

Now let the to limits be -2 and 0.

Area=\int\limits^0_{-2} {(\sqrt{x} -2)} \, dx\\

Area=\int\limits^0_{-2} {(\sqrt{x} )} \, dx-\int\limits^0_{-2} {(2)} \, dx\\\\               ( \int\limits {x^{\frac{1}{2} } \, dx = 2\frac{x^\frac{3}{2} }{3} )

Area=|\frac{2x\sqrt{x} }{3} |^0_{-2}-|2x|^0_{-2}          

Area=\frac{-4\sqrt{2}i }{3} -(-4)              (if one limit is 0 then   |x|^n_0=n )

        =\frac{12-4\sqrt{2}i }{3}

Similar questions