find the area of the hexagon abcdef fig ac= 8cm,cd = 4cm bm = 3cm ne =10.2 do =5cm af =8.4 op=3.2cm
Answers
Answer:
Step-by-step
ONCD is a square
\therefore NC=CD=OD=ON= 5 cm∴NC=CD=OD=ON=5cm
AC= 8 cm
AC= AN+NC
8= AN+5
\therefore AN=3 cm∴AN=3cm
A(\Delta ABC)=\frac{1}{2}\times AC\times BMA(ΔABC)=
2
1
×AC×BM
=\frac{1}{2}\times 8\times 3=12=
2
1
×8×3=12
A(\square ONCD)= (side)^{2}=5^{2}=25A(□ONCD)=(side)
2
=5
2
=25
NE=NO+OP+PE
10.2+5+3.2+PE
\therefore PE=2∴PE=2
A(\square ANPF)A(□ANPF) = length \times× breadth (\because \square ANPF(∵□ANPF is a rectangle)
=AF\times AN=AF×AN \therefore (AN=PF)(AF=NP)∴(AN=PF)(AF=NP)
=8.4\times 3=8.4×3
=25.2=25.2
A(\Delta ODE)=\frac{1}{2}\times (OD\times DE)A(ΔODE)=
2
1
×(OD×DE)
=\frac{1}{2}\times 5\times (OP+PE)=
2
1
×5×(OP+PE)
=\frac{1}{2}\times 5\times (3.2+2)=\frac{1}{2}\times 5\times 5.2=
2
1
×5×(3.2+2)=
2
1
×5×5.2
=8
A(\Delta FPE)=\frac{1}{2}\times FP\times PEA(ΔFPE)=
2
1
×FP×PE
=\frac{1}{2}\times 3\times 2=3=
2
1
×3×2=3
\therefore∴ Area of hexagon ABCDEF=A(\Delta ABC)+A(\Delta FPE)+A(\Delta OPE)+A(\square ONCD)+A(\square ANPF)ABCDEF=A(ΔABC)+A(ΔFPE)+A(ΔOPE)+A(□ONCD)+A(□ANPF)
=12+3+8+25+25.2=12+3+8+25+25.2
=73.2 cm^{2}=73.2cm