Math, asked by shyamal1022, 10 months ago

find the area of the loop of the curve ​

Attachments:

Answers

Answered by SamikBiswa1911
0

Answer:

a

2

(

4

π

)

2

Explanation:

Converting to polar using  

x

=

r

cos

θ

and  

y

=

r

sin

θ

:

r

cos

θ

(

r

2

cos

2

θ

+

r

2

sin

2

θ

)

=

a

(

r

2

cos

2

θ

r

2

sin

2

θ

)

r

3

cos

θ

(

cos

2

θ

+

sin

2

θ

)

=

a

r

2

(

cos

2

θ

sin

2

θ

)

Using  

cos

2

θ

+

sin

2

θ

=

1

:

r

3

cos

θ

=

a

r

2

(

cos

2

θ

(

1

cos

2

θ

)

)

r

3

cos

θ

a

r

2

(

2

cos

2

θ

1

)

=

0

r

2

(

r

cos

θ

a

(

2

cos

2

θ

1

)

)

=

0

Note that  

r

2

=

0

is just the point  

(

0

,

0

)

, so we're left with:

r

cos

θ

=

a

(

2

cos

2

θ

1

)

r

=

a

(

2

cos

θ

sec

θ

)

The loop will begin and end when  

r

=

0

, which is when

2

cos

θ

=

sec

θ

2

cos

2

θ

=

1

cos

θ

=

±

1

2

θ

=

±

π

4

The area of a polar curve  

r

from  

θ

=

α

to  

θ

=

β

is given by  

1

2

β

α

r

2

d

θ

, so here the integral for the area is:

1

2

π

4

π

4

[

a

(

2

cos

θ

sec

θ

)

]

2

d

θ

Since the loop is symmetric across the  

x

axis:

=

π

4

0

a

2

(

2

cos

θ

sec

θ

)

2

d

θ

=

a

2

π

4

0

(

4

cos

2

θ

4

cos

θ

sec

θ

+

sec

2

θ

)

d

θ

Using  

cos

2

θ

=

1

2

(

1

+

cos

2

θ

)

:

=

a

2

π

4

0

(

2

(

1

+

cos

2

θ

)

4

+

sec

2

θ

)

d

θ

=

a

2

π

4

0

(

2

cos

2

θ

+

sec

2

θ

2

)

d

θ

Integrating term by term:

=

a

2

(

sin

2

θ

+

tan

θ

2

θ

)

π

4

0

=

a

2

(

sin

(

π

2

)

+

tan

(

π

4

)

π

2

)

a

2

(

sin

0

+

tan

0

0

)

=

a

2

(

1

+

1

π

2

)

=

a

2

(

4

π

)

2

Answer linka

2

(

4

π

)

2

Explanation:

Converting to polar using  

x

=

r

cos

θ

and  

y

=

r

sin

θ

:

r

cos

θ

(

r

2

cos

2

θ

+

r

2

sin

2

θ

)

=

a

(

r

2

cos

2

θ

r

2

sin

2

θ

)

r

3

cos

θ

(

cos

2

θ

+

sin

2

θ

)

=

a

r

2

(

cos

2

θ

sin

2

θ

)

Using  

cos

2

θ

+

sin

2

θ

=

1

:

r

3

cos

θ

=

a

r

2

(

cos

2

θ

(

1

cos

2

θ

)

)

r

3

cos

θ

a

r

2

(

2

cos

2

θ

1

)

=

0

r

2

(

r

cos

θ

a

(

2

cos

2

θ

1

)

)

=

0

Note that  

r

2

=

0

is just the point  

(

0

,

0

)

, so we're left with:

r

cos

θ

=

a

(

2

cos

2

θ

1

)

r

=

a

(

2

cos

θ

sec

θ

)

The loop will begin and end when  

r

=

0

, which is when

2

cos

θ

=

sec

θ

2

cos

2

θ

=

1

cos

θ

=

±

1

2

θ

=

±

π

4

The area of a polar curve  

r

from  

θ

=

α

to  

θ

=

β

is given by  

1

2

β

α

r

2

d

θ

, so here the integral for the area is:

1

2

π

4

π

4

[

a

(

2

cos

θ

sec

θ

)

]

2

d

θ

Since the loop is symmetric across the  

x

axis:

=

π

4

0

a

2

(

2

cos

θ

sec

θ

)

2

d

θ

=

a

2

π

4

0

(

4

cos

2

θ

4

cos

θ

sec

θ

+

sec

2

θ

)

d

θ

Using  

cos

2

θ

=

1

2

(

1

+

cos

2

θ

)

:

=

a

2

π

4

0

(

2

(

1

+

cos

2

θ

)

4

+

sec

2

θ

)

d

θ

=

a

2

π

4

0

(

2

cos

2

θ

+

sec

2

θ

2

)

d

θ

Integrating term by term:

=

a

2

(

sin

2

θ

+

tan

θ

2

θ

)

π

4

0

=

a

2

(

sin

(

π

2

)

+

tan

(

π

4

)

π

2

)

a

2

(

sin

0

+

tan

0

0

)

=

a

2

(

1

+

1

π

2

)

=

a

2

(

4

π

)

2

Answer link

Similar questions