Math, asked by jaskamalsinghvirdi, 4 months ago

Find the area of the Parabola y 8x boended
by x=2 in the first quadrant​

Answers

Answered by mathdude500
2

Given Question :-

  • Find the area of the Parabola y^2 = 8x bounded by x=2 in the first quadrant.

\large\underline\purple{\bold{Solution :-  }}

Let

 \tt :  \implies \: AB \: represents \: the \: line \: x \:  =  \: 2.

and

 \tt :  \implies \: AOB \: represents \: the \: parabola \:  {y}^{2}  = 8x.

Now,

We have given that

 \tt :  \implies \:  {y}^{2}  = 8x \\

 \tt :  \implies \: y \:  =  \:  \sqrt{8x}

 \tt :  \implies \: y \:  =  \: 2 \sqrt{2}  \sqrt{x}

So,

The required area is AOC, given by

 \tt :  \implies \: Area_{(AOC)} = \int_0^2 \: y \: dx

 \tt :  \implies \: Area_{(AOC)} =\int_0^2 \: (2 \:  \sqrt{2}  \:  \sqrt{x} ) \: dx

 \tt :  \implies \: Area_{(AOC)} = \: 2 \sqrt{2} \int_0^2 \:  {(x)}^{ \frac{1}{2} } dx

 \tt :  \implies \: Area_{(AOC)} = \: 2 \sqrt{2 }  \:  \bigg[ \dfrac{ {x}^{ \frac{1}{2}  + 1} }{ \frac{1}{2} + 1 } \bigg]_0^2

 \tt :  \implies \: Area_{(AOC)} = \: 2 \sqrt{2 }  \times\dfrac{2}{3}   \:  \bigg[  {(x)}^{ \frac{3}{2} } \bigg]_0^2

 \tt :  \implies \: Area_{(AOC)} = \: \dfrac{4 \sqrt{2} }{3}  \bigg( {(2)}^{ \frac{3}{2} }  - 0 \bigg)

 \tt :  \implies \: Area_{(AOC)} = \: \dfrac{4 \sqrt{2} }{3}   \times  {( \sqrt{2} )}^{2 \times  \frac{3}{2} }

 \tt :  \implies \: Area_{(AOC)} =\dfrac{4 \sqrt{2} }{3}  \times  {( \sqrt{2}) }^{3}

 \tt :  \implies \: Area_{(AOC)} =\dfrac{4 \sqrt{2} }{3}  \times 2 \sqrt{2}

 \tt :  \implies \: Area_{(AOC)} = \: \dfrac{16}{3 }  \: sq. \: units

Attachments:
Similar questions