Math, asked by shampa4dey, 4 months ago

Find the area of the parallelogram formed by the lines y = mx, y = mx + 1, y = nx and y = nx+1.​

Answers

Answered by thebrainlykapil
51

Answer:

  • Let lines OB : y = mx
  • CA : y = nx + 1
  • BA : y = nx + 1
  • and OC : y = 7

━━━━━━━━━━━━━━━━━━━━━━━━━

The point of intersection B of OB and AB has x coordinate 1/(m - n).

━━━━━━━━━━━━━━━━━━━━━━━━━

Now, area of a parallelogram

\begin{gathered}\begin{gathered}: \implies \underline{ \boxed{\displaystyle \sf \bold{\:</strong><strong> </strong><strong>OBAC </strong><strong>\:  =  \: 2 \:  \times  \: </strong><strong>A</strong><strong>rea \: of \: a \: </strong><strong>P</strong><strong>arallelogram</strong><strong> }} }\\ \\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}: \implies \displaystyle \sf \:</strong><strong> </strong><strong> </strong><strong>2 \:  \times  \:  \frac{1}{2}  \: </strong><strong>OA</strong><strong> \:  \times  \: </strong><strong>DB</strong><strong> \:  =  \: 2 \:  \times  \:  \frac{1}{2}  \:  \times   \:  \frac{1}{m \:  -  \: n} </strong><strong>\\ \\ \\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}: \implies \underline{ \boxed{\displaystyle \sf \bold{\: </strong><strong> \frac{1}{m \:  -  \: n}  \:  =  \:  \frac{1}{ |m \:  -  \: n| } </strong><strong>}} }\\ \\\end{gathered}\end{gathered}

It is depending upon whether m > n or m < n.

━━━━━━━━━━━━━━━━━━━━━━━━━

Attachments:
Answered by ItzCuppyCakeJanu
6

Answer:

ThebrainlyKapil's answer should be always brainliest...plz mark it as brainliest dear...

Step-by-step explanation:

Similar questions