Math, asked by Vanella4296, 1 year ago

Find the area of the parallelogram having a = 2j - k and b = -i + k as adjacent sides.

Answers

Answered by MaheswariS
13

\textbf{Given:}

\textsf{Adjacent sides of a parallelogram are}

\mathsf{\overrightarrow{a}=2\hat{j}-\hat{k}}

\mathsf{\overrightarrow{b}=-\hat{i}+\hat{k}}

\textbf{To find:}

\textsf{Area parallelogram having the given two vectors}

\mathsf{as\;adjacent\;sides}

\textbf{Solution:}

\mathsf{Area\;of\;parallelogram\;having\;\overrightarrow{a}\;and\;\overrightarrow{b}\;as\;adjacent\;sides}

\mathsf{=|\overrightarrow{a}{\times}\overrightarrow{b}|}

\mathsf{Consider,}

\mathsf{\overrightarrow{a}{\times}\overrightarrow{b}}

\mathsf{=\left|\begin{array}{ccc}\hat{i}&\hat{j}&\hat{k}\\0&2&-1\\-1&0&1\end{array}\right|}

\mathsf{=\hat{i}(2-0)-\hat{j}(0-1)+\hat{k}(0+2)}

\mathsf{=2\hat{i}+\hat{j}+2\hat{k}}

\mathsf{|\overrightarrow{a}{\times}\overrightarrow{b}|=\sqrt{2^2+1^2+2^2}=\sqrt{4+1+4}=\sqrt{9}=3}

\therefore\mathsf{Area\;of\;the\;parallelogram\;is\;3\;square\;units}

Answered by chocolate096
2

Step-by-step explanation:

10x

2000

x

2002

+10x

2001

=957.9

\mathsf{\dfrac{x^{2002}+10x^{2001}}{x^{2000}}=9579}

x

2000

x

2002

+10x

2001

=9579

\mathsf{\dfrac{x^{2002}}{x^{2000}}+10\dfrac{x^{2001}}{x^{2000}}=9579}

x

2000

x

2002

+10

x

2000

x

2001

=9579

\mathsf{x^2+10x=9579}x

2

+10x=9579

\mathsf{x^2+10x-9579=0}x

2

+10x−9579=0

\mathsf{(x-93)(x+103)=0}(x−93)(x+103)=0

\implies\mathsf{x-93=0\;\;\;or\;\;\;x+103=0}⟹x−93=0orx+103=0

\mathsf{x=93,-103}x=93,−103

\mathsf{Solutions\;are\;93\;and\;-103}Solutionsare93and−103

Similar questions