Find the area of the parallelogram having a = 2j - k and b = -i + k as adjacent sides.
Answers
Answered by
13
Answered by
2
Step-by-step explanation:
10x
2000
x
2002
+10x
2001
=957.9
\mathsf{\dfrac{x^{2002}+10x^{2001}}{x^{2000}}=9579}
x
2000
x
2002
+10x
2001
=9579
\mathsf{\dfrac{x^{2002}}{x^{2000}}+10\dfrac{x^{2001}}{x^{2000}}=9579}
x
2000
x
2002
+10
x
2000
x
2001
=9579
\mathsf{x^2+10x=9579}x
2
+10x=9579
\mathsf{x^2+10x-9579=0}x
2
+10x−9579=0
\mathsf{(x-93)(x+103)=0}(x−93)(x+103)=0
\implies\mathsf{x-93=0\;\;\;or\;\;\;x+103=0}⟹x−93=0orx+103=0
\mathsf{x=93,-103}x=93,−103
\mathsf{Solutions\;are\;93\;and\;-103}Solutionsare93and−103
Similar questions