Physics, asked by sakshisharma30966, 8 months ago

find the area of the parallelogram whose adjacent sides are formed by the vector A = i` - 3j` +K` and B= i` + j` + k` ?​

Answers

Answered by Anonymous
5

Explanation:

its my pleasure to help you.

please mark me as a brainliest

Attachments:
Answered by nirman95
17

Given:

Adjacent sides of parallelogram is formed by vectors

 \vec{A} =  \hat{i} - 3 \hat{j} +  \hat{k}

 \vec{B} =  \hat{i}  + \hat{j} +  \hat{k}

To find:

Area of parallelogram.

Calculation:

The area of a parallelogram is given by the magnitude of vector product of the adjacent sides;

 \boxed{ \sf{area =  | \vec{A} \times  \vec{B}| }}

\sf{=>\vec{A}\times\vec{B} = \left[ \begin{array}{c  c  c} \hat{i} &  \hat{j} &  \hat{k} \\ 1 &  -3 &  1 \\ 1 &  1 &  1 \end{array} \right]}

 \sf{ =  > \vec{A} \times  \vec{B} =  \hat{i}( - 3 - 1) -  \hat{j}(1 - 1) +  \hat{k}(1 + 3)}

 \sf{ =  >  \vec{A} \times  \vec{B}  =   - 4\hat{i} - 0 \hat{j} +  4\hat{k}}

 \sf{ =  > \vec{A} \times  \vec{B}  =   - 4\hat{i}  +  4\hat{k}}

 \sf{ =  >  | \vec{A} \times  \vec{B}   | =    \sqrt{ {( - 4)}^{2}  +  {(4)}^{2} } }

 \sf{ =  >  | \vec{A} \times  \vec{B}   | =    \sqrt{ 16 +  16 } }

 \sf{ =  >  | \vec{A} \times  \vec{B}   | =    \sqrt{32 } }

 \sf{ =  >  | \vec{A} \times  \vec{B}   | =    4\sqrt{2 } }

So, final answer:

 \boxed{ \bf{ area =  | \vec{A} \times  \vec{B}   | =    4\sqrt{2 }  \: units}}

Similar questions