Math, asked by sagarchosla557, 1 year ago

Find the area of the pentagon ABCDE shown in figure if AD = 8 cm,
AH = 6 an, AG=4 cm, AF = 3cm, BF=2cm, CH = 3cm and EG=2.5cm.
Solution​

Answers

Answered by amirgraveiens
10

Area of the pentagon ABCDE is 7.5 cm^2

Step-by-step explanation:

Here ABCDE is a pentagon.

AD = 8 cm,  AH = 6 cm, AG=4 cm, AF = 3cm, BF= 2cm, CH = 3cm and EG= 2.5cm.

Now,

Area of Δ AFB = \frac{1}{2}\times base \times height

                        = \frac{1}{2}\times BF \times AF

                        = \frac{1}{2}\times 2 \times 3

                        = 3 cm^2

AD = AH +HD                [shown in figure]

HD = AD -AH

     = 8 - 6

HD = 2 cm

Area of Δ CHD = \frac{1}{2}\times base \times height

                        = \frac{1}{2}\times CH \times HD

                        = \frac{1}{2}\times 3 \times 2

                        = 3 cm^2

Area of Δ AEG = \frac{1}{2}\times AG \times GE

                        = \frac{1}{2}\times 4 \times 2.5

                        = 5 cm^2

AD = AG + GD

DG = AD - AG

     = 8 - 4

DG = 4 cm

Area of Δ EGD = \frac{1}{2}\times GD \times GE

                         = \frac{1}{2}\times 4 \times 2.5

                         = 5 cm^2

AF +FH + HD = AD

FH = AD - AF -HD

     = 8 - 3 - 2

FH = 3 cm

Area of trapezium BFHC = \frac{1}{2}\times (sum of parallel sides)\times height

                                         = \frac{1}{2}\times (BF +CH)\times FH

                                         = \frac{1}{2}\times (2+3)\times 3

                                         = 7.5 cm^2

Now, area of the pentagon ABCDE = Area of Δ AFB + Area of Δ CHD + Area of Δ AEG + Area of Δ EGD + Area of trapezium BFHC

                                                          = 3 + 3 + 5 +5 +7.5

                                                           = 23.5 cm^2

Attachments:
Similar questions